4 research outputs found

    Synthesis of Fmoc-Protected Arylphenylalanines (Bip Derivatives) via Nonaqueous Suzuki-Miyaura Cross-Coupling Reactions

    No full text
    A one-step synthesis of Fmoc-protected aryl/heteroaryl-substituted phenylalanines (Bip derivatives) using the nonaqueous palladium-catalyzed Suzuki–Miyaura cross-coupling (SMC) reaction of Fmoc-protected bromo- or iodophenylalanines is reported. This protocol allows for the direct formation of a variety of unnatural biaryl-containing amino acids in good to excellent yield, which can be readily used in subsequent Fmoc solid-phase peptide synthesis. The synthetic utility of this method is also demonstrated by the SMC reaction of bromophenylalanine-containing tripeptides

    Conformationally Constrained <i>ortho-</i>Anilino Diaryl Ureas: Discovery of 1‑(2-(1′-Neopentylspiro[indoline-3,4′-piperidine]-1-yl)phenyl)-3-(4-(trifluoromethoxy)phenyl)urea, a Potent, Selective, and Bioavailable P2Y<sub>1</sub> Antagonist

    No full text
    Preclinical antithrombotic efficacy and bleeding models have demonstrated that P2Y<sub>1</sub> antagonists are efficacious as antiplatelet agents and may offer a safety advantage over P2Y<sub>12</sub> antagonists in terms of reduced bleeding liabilities. In this article, we describe the structural modification of the <i>tert</i>-butyl phenoxy portion of lead compound <b>1</b> and the subsequent discovery of a novel series of conformationally constrained <i>ortho</i>-anilino diaryl ureas. In particular, spiropiperidine indoline-substituted diaryl ureas are described as potent, orally bioavailable small-molecule P2Y<sub>1</sub> antagonists with improved activity in functional assays and improved oral bioavailability in rats. Homology modeling and rat PK/PD studies on benchmark compound <b>3l</b> will also be presented. Compound <b>3l</b> was our first P2Y<sub>1</sub> antagonist to demonstrate a robust oral antithrombotic effect with mild bleeding liability in the rat thrombosis and hemostasis models

    Triphenylethanamine Derivatives as Cholesteryl Ester Transfer Protein Inhibitors: Discovery of <i>N</i>‑[(1<i>R</i>)‑1-(3-Cyclopropoxy-4-fluorophenyl)-1-[3-fluoro-5-(1,1,2,2-tetrafluoroethoxy)­phenyl]-2-phenylethyl]-4-fluoro-3-(trifluoromethyl)­benzamide (BMS-795311)

    No full text
    Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-C in animals and humans and may be antiatherosclerotic by enhancing reverse cholesterol transport (RCT). In this article, we describe the lead optimization efforts resulting in the discovery of a series of triphenylethanamine (TPE) ureas and amides as potent and orally available CETP inhibitors. Compound <b>10g</b> is a potent CETP inhibitor that maximally inhibited cholesteryl ester (CE) transfer activity at an oral dose of 1 mg/kg in human CETP/apoB-100 dual transgenic mice and increased HDL cholesterol content and size comparable to torcetrapib (<b>1</b>) in moderately-fat fed hamsters. In contrast to the off-target liabilities with <b>1</b>, no blood pressure increase was observed with <b>10g</b> in rat telemetry studies and no increase of aldosterone synthase (CYP11B2) was detected in H295R cells. On the basis of its preclinical profile, compound <b>10g</b> was advanced into preclinical safety studies

    Triphenylethanamine Derivatives as Cholesteryl Ester Transfer Protein Inhibitors: Discovery of <i>N</i>‑[(1<i>R</i>)‑1-(3-Cyclopropoxy-4-fluorophenyl)-1-[3-fluoro-5-(1,1,2,2-tetrafluoroethoxy)­phenyl]-2-phenylethyl]-4-fluoro-3-(trifluoromethyl)­benzamide (BMS-795311)

    No full text
    Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-C in animals and humans and may be antiatherosclerotic by enhancing reverse cholesterol transport (RCT). In this article, we describe the lead optimization efforts resulting in the discovery of a series of triphenylethanamine (TPE) ureas and amides as potent and orally available CETP inhibitors. Compound <b>10g</b> is a potent CETP inhibitor that maximally inhibited cholesteryl ester (CE) transfer activity at an oral dose of 1 mg/kg in human CETP/apoB-100 dual transgenic mice and increased HDL cholesterol content and size comparable to torcetrapib (<b>1</b>) in moderately-fat fed hamsters. In contrast to the off-target liabilities with <b>1</b>, no blood pressure increase was observed with <b>10g</b> in rat telemetry studies and no increase of aldosterone synthase (CYP11B2) was detected in H295R cells. On the basis of its preclinical profile, compound <b>10g</b> was advanced into preclinical safety studies
    corecore