Abstract

Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-C in animals and humans and may be antiatherosclerotic by enhancing reverse cholesterol transport (RCT). In this article, we describe the lead optimization efforts resulting in the discovery of a series of triphenylethanamine (TPE) ureas and amides as potent and orally available CETP inhibitors. Compound <b>10g</b> is a potent CETP inhibitor that maximally inhibited cholesteryl ester (CE) transfer activity at an oral dose of 1 mg/kg in human CETP/apoB-100 dual transgenic mice and increased HDL cholesterol content and size comparable to torcetrapib (<b>1</b>) in moderately-fat fed hamsters. In contrast to the off-target liabilities with <b>1</b>, no blood pressure increase was observed with <b>10g</b> in rat telemetry studies and no increase of aldosterone synthase (CYP11B2) was detected in H295R cells. On the basis of its preclinical profile, compound <b>10g</b> was advanced into preclinical safety studies

    Similar works

    Full text

    thumbnail-image

    Available Versions