5 research outputs found

    ACSL6 Is Associated with the Number of Cigarettes Smoked and Its Expression Is Altered by Chronic Nicotine Exposure

    Get PDF
    Individuals with schizophrenia tend to be heavy smokers and are at high risk for tobacco dependence. However, the nature of the comorbidity is not entirely clear. We previously reported evidence for association of schizophrenia with SNPs and SNP haplotypes in a region of chromosome 5q containing the SPEC2, PDZ-GEF2 and ACSL6 genes. In this current study, analysis of the control subjects of the Molecular Genetics of Schizophrenia (MGS) sample showed similar pattern of association with number of cigarettes smoked per day (numCIG) for the same region. To further test if this locus is associated with tobacco smoking as measured by numCIG and FTND, we conducted replication and meta-analysis in 12 independent samples (n>16,000) for two markers in ACSL6 reported in our previous schizophrenia study. In the meta-analysis of the replication samples, we found that rs667437 and rs477084 were significantly associated with numCIG (pβ€Š=β€Š0.00038 and 0.00136 respectively) but not with FTND scores. We then used in vitro and in vivo techniques to test if nicotine exposure influences the expression of ACSL6 in brain. Primary cortical culture studies showed that chronic (5-day) exposure to nicotine stimulated ACSL6 mRNA expression. Fourteen days of nicotine administration via osmotic mini pump also increased ACSL6 protein levels in the prefrontal cortex and hippocampus of mice. These increases were suppressed by injection of the nicotinic receptor antagonist mecamylamine, suggesting that elevated expression of ACSL6 requires nicotinic receptor activation. These findings suggest that variations in the ACSL6 gene may contribute to the quantity of cigarettes smoked. The independent associations of this locus with schizophrenia and with numCIG in non-schizophrenic subjects suggest that this locus may be a common liability to both conditions

    The Ganges and the GAP: An Assessment of Efforts to Clean a Sacred River

    No full text
    For centuries, the Ganges River in India has been the locus of sacred rites for the Hindus. The religious significance of the Ganges is physically manifested in <em>ghats</em> (stepped landings) that form the land-water interface. Besides serving as a site for religious bathing and cremation, the <em>ghats</em> are also tied to people’s livelihoods and are an inseparable part of their daily lives. Today, the increasingly urbanized Ganges basin sustains more than 40 percent of India’s population. At the same time, industrialization and the pressures of a growing population along its banks have contributed to alarming levels of pollution in the river. In 1985, the federal government of India launched the Ganga Action Plan (GAP) with the primary objective of cleaning the river. However, characterized by centralized planning and control with little public participation, the GAP had limited impact. In 2011, the government launched yet another clean up programβ€”the National Ganga River Basin Projectβ€”with support from the World Bank. In this paper, we take a closer look at the programs to highlight the tenuous relationship between the need for β€˜efficient’ management of environmental problems and public participation. Can public participation fit into the technocratic model that is often adopted by environmental programs? What approaches to participation kindle authorship and empowerment among those who share a deep relationship with the river and the <em>ghats</em>? Can religious practices be accommodated within scientific frameworks of adaptive management and resilience? We argue that rethinking the relationship between pollution control programs and participation is crucial for any effort to clean the Ganges, restore its waterfront, and catalyze broader regeneration in the Ganges basin

    A Method for Gauging Landscape Change as a Prelude to Urban Watershed Regeneration: The Case of the Carioca River, Rio de Janeiro

    No full text
    Natural systems undergo processes, flows, and rhythms that differ from those of urban sociocultural systems. While the former takes place over eras or many generations, the latter may occur within years or even months. Natural systems change includes no principle of intentional progress or enhancement of complexity. In contrast, sociocultural systems change occurs through inherited characteristics, learning, and cultural transmission [1]. Both are dynamic, heterogeneous, and vulnerable to regime shifts, and are inextricably linked. The interrelations among natural and anthropogenic factors affecting sustainability vary spatially and temporally. This paper focuses on landscape changes along the Carioca River valley in Rio de Janeiro, located in the Brazilian Neotropical Southeastern Region, and its implications for local urban sustainability. The study incorporates a transdisciplinary approach that integrates landscape ecology and urban morphology methodologies to gauge landscape change and assess social-ecological systems dynamics. The methodology includes a variety of landscape change assessments; including on-site landscape ecological, landscape morphology, biological and urbanistic surveys, to gauge urban watershed quality. It presents an adapted inventory for assessment of urban tropical rivers, Neotropical Urban Stream Visual Assessment Protocol (NUSVAP), and correlates the level of stream and rainforest integrity to local urban environmental patterns and processes. How can urban regional land managers, planners and communities work together to promote shifts toward more desirable configurations and processes? An understanding of the transient behavior of social-ecological systems and how they respond to change and disturbance is fundamental to building appropriate management strategies and fostering resilience, regenerative capacity, and sustainable development in urban watersheds. The sociocultural patterns, processes and dynamics of Rio’s hillsides suggest that increasing the multifunctionality, flexibility, adaptability and connectivity of open spaces may influence carrying, adaptive and regenerative capacities of urban landscape systems

    Canada

    No full text
    corecore