8 research outputs found

    Avanços da cirurgia robótica no tratamento de doenças cardiovasculares

    Get PDF
    Várias cirurgias médicas já utilizaram a tecnologia robótica, tais como: cirurgias no estômago, bexiga, rins, próstata, cérebro e inclusive no coração, o qual proporciona-se a reparação de válvulas cardíacas e até mesmo cirurgias nas artérias. O principal objetivo do presente estudo é discutir por meio da literatura científica acerca dos avanços da cirurgia robótica no tratamento de doenças cardiovasculares. Trata-se de uma revisão sistemática da literatura, dos quais, utilizou-se as bases e biblioteca eletrônica Scielo e Periódico Capes, totalizando 5 artigos elegíveis. A cirurgia robótica tem sido um dos principais métodos utilizados em tratamentos cardiovasculares quando comparados com técnicas convencionais, sobretudo, no que diz respeito, a cirurgia de revascularização do miocárdio

    Libidibia ferrea Fruit Crude Extract and Fractions Show Anti-Inflammatory, Antioxidant, and Antinociceptive Effect In Vivo and Increase Cell Viability In Vitro

    No full text
    Background. Libidibia ferrea (L. ferrea) is found throughout the northeastern region of Brazil, where it has been used in folk medicine with beneficial effects on many inflammatory disorders. Purpose. This study investigated the phytochemical composition of the crude extract and fractions of L. ferrea fruit and evaluated its anti-inflammatory and antinociceptive activities in vivo and effect on cell viability in vitro. Methods. Characterization of polyphenols present in crude extract (CE), hydroalcoholic fractions of 20-80% ethanol (CE20, CE40, CE60, and CE80), aqueous fraction (AqF), and ethyl acetate (EAF) fractions of L. ferrea fruit was performed by chromatographic analysis. Anti-inflammatory activity was evaluated by using a carrageenan-induced peritonitis model submitted to a leukocyte migration assay and myeloperoxidase activity (MPO) analysis. Total glutathione and malondialdehyde (MDA) levels were assessed to evaluate the oxidative stress level. Antinociceptive activity was evaluated by acetic acid-induced abdominal writhing and hot plate test. In vitro cell viability was determined by using MTT assay in a mouse embryonic fibroblast cell line (3T3 cells). Results. Chromatography revealed the presence of ellagic acid content in EAF (3.06), CE (2.96), and CE40 (2.89). Gallic acid was found in EAF (12.03), CE 20 (4.43), and CE (3.99). L. ferrea crude extract and all fractions significantly reduced leukocyte migration and MPO activity (p<0.001). L. ferrea antioxidant effect was observed through high levels of total glutathione and reduction of MDA levels (p<0.001). Acetic acid-induced nociception was significantly inhibited after administration of L. ferrea crude extract and all fractions (p<0.001). Crude extract and all fractions significantly increased the viability of the 3T3 cell line (p<0.05). Conclusions. The appropriate extraction procedure preserves the chemical components of L. ferrea fruit, such as gallic acid and ellargic acid. Crude extract and fractions of L. ferrea fruit exhibited anti-inflammatory, antioxidant, antinociceptive activities in vivo and enhanced cell viability in vitro

    Crude extract from Libidibia ferrea (Mart. ex. Tul.) L.P. Queiroz leaves decreased intra articular inflammation induced by zymosan in rats

    No full text
    Abstract Background Libidibia ferrea (L. ferrea) has been used in folk medicine to treat several conditions and to prevent cancer. This study performed a chromatographic analysis of the crude aqueous extract of Libidibia ferrea (Mart. ex. Tul.) L.P. Queiroz (LfAE) leaves and evaluated its in vivo antioxidant and anti-inflammatory potential. Methods Polyphenols present in LfAE were characterized by high performance liquid chromatography (HPLC). Anti-inflammatory activity was studied in an experimental model of zymosan-induced intra-articular inflammation, conducted in Wistar rats treated with LfAE at the doses of 100, 200 and 300 mg/kg by gavage. Synovial fluid was collected for global leukocyte count, for spectrocopical UV/VIS analysis of myeloperoxidase (MPO) activity, total glutathione and malondialdehyde (MDA), and for quantification of inflammatory cytokines IL1-β and TNF-α by enzyme-linked immunosorbent assay. Synovial membrane was collected for histological analysis. The level of statistical significance was p < 0.05. Results HPLC detected concentrations of 1.56 (0.77) %m/m for ellagic acid and 1.20 (1.38) %m/m for gallic acid in LfAE leaves. Treatment with LfAE at all doses significantly decreased the leukocyte influx into the synovial fluid (p < 0.001) and myeloperoxidase activity (p < 0.001), an important marker of neutrophils. LfAE at doses of 100 (p < 0.05), 200 and 300 mg/kg (p < 0.001) also reduced the levels of MDA. LfAE at doses of 200 and 300 mg/kg significantly decreased the levels of IL-1β (p < 0.05) and TNF-α (p < 0.001). All doses of LfAE resulted in increased levels of total glutathione (p < 0.001). Histopathological findings confirmed a reduction of the inflammatory infiltrate in the rats treated with LfAE at a dose of 200 mg/kg (p < 0.05). Conclusion LfAE has an important anti-oxidant and anti-inflammatory effect on intra-articular inflammation

    Crude extract and fractions from Eugenia uniflora Linn leaves showed anti-inflammatory, antioxidant, and antibacterial activities

    No full text
    Abstract Background This study showed phytochemical composition and evaluates the anti-inflammatory, and analgesic activities of crude extract (CE) and fractions from E. uniflora Linn leaves. Methods Polyphenols present in crude extract (CE), in aqueous fraction (AqF), and ethyl acetate (EAF) treated fractions from E. uniflora Linn leaves were shown by chromatographic analysis in order to conduct a phytochemical characterization. Antibacterial activity was evaluated based on minimum inhibitory concentrations (MICs) determined using the agar dilution method. Doses of 50, 100, and 200 mg/kg of the CE and fractions were applied for conducting in vivo models (male Swiss mice, 8–10 weeks old). The peritonitis experimental model was induced by carrageenan following of Myeloperoxidase activity (MPO), Total glutathione and malondialdehyde (MDA), IL-1β and TNF-α levels by spectroscopic UV/VIS analysis. Antinociceptive activity was evaluated based on an abdominal writhing model and hot plate test. The results were statistically evaluated using one-way analysis of variance (ANOVA), followed by Bonferroni’s post-hoc test. The level of statistical significance was p < 0.05. Results High-performance liquid chromatography with photodiode array detection (HPLC-DAD) detected varying concentrations of gallic acid, ellagic acid, and myricitrin in the CE and fractions obtained from E. uniflora Linn leaves (0.05–0.87%w/w, 0.20–0.32%w/w, and 1.71–6.56%w/w, respectively). In general, the CE had lower MIC values than the fractions, including the lowest MIC against the MRSA strain. The CE and AqF also significantly reduced leukocyte migration and MPO activity (p < 0.05). In addition, AqF significantly reduced IL-1β and TNF-α levels (p < 0.05). Furthermore, the CE and fractions exhibited an antioxidant effect (p < 0.05) and peripheral analgesic activity (p < 0.05). Conclusions The CE and fractions from the studied E. uniflora Linn leaves exhibited antibacterial, anti-inflammatory, antioxidant, and analgesic activity in the performed assays

    Increased interregional virus exchange and nucleotide diversity outline the expansion of chikungunya virus in Brazil

    No full text
    Abstract The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021–2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil
    corecore