61 research outputs found
Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis
AbstractMultiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction.NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation.In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE
Effects of Valproic Acid on Cerebral Nutrient Carriers' Expression in the Rat
Objective: The antiepileptic drug valproate has been shown to affect the expression of carriers for essential compounds and drugs in extracerebral tissues. The aim of the current study was to evaluate in vivo the effect of valproate treatment on the cerebral expression of carriers and selected genes of the blood-brain barrier (BBB) in the rat.Methods: Male Wistar rats were treated daily for 7 days by intraperitoneal injections of valproate (75, 150, or 300 mg/kg/day) or the vehicle. mRNA was isolated from the cerebral cortex and the hippocampus. Transcript levels of 37 genes were measured using a customized gene expression assay. Quantitative histone acetylation was evaluated by western blotting. Glucose6-phosphate (G6P) tissue levels were used as a surrogate of cerebral glucose concentrations.Results: Valproate treatment was associated with significant reduction (up to 22%; P < 0.05) in cortical and hippocampal claudin 5-normalized Slc2a1 (Glut1) mRNA expression. G6P levels were not significantly altered, but were correlated with Slc2a1 transcript levels (r = 0.499; P < 0.02). None of the other 36 screened genes were significantly affected by valproate. Cortical histone hyperacetylation indicated cerebral activity of valproate on a major pathway regulating gene expression (P < 0.02).Significance: The effect of valproate on nutrient carriers appears to be tissue-specific and even brain area-specific. If validated in humans, the changes in Glut1 expression might have clinical implications in positron emission tomography (PET) imaging. Further studies are required for elucidating the relevance of these findings to the clinic
Neuroprotective Effect of Transplanted Human Embryonic Stem Cell-Derived Neural Precursors in an Animal Model of Multiple Sclerosis
BACKGROUND: Multiple sclerosis (MS) is an immune mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination and suppress the inflammatory process. METHODS: We transplanted human embryonic stem cells (hESC)-derived early multipotent neural precursors (NPs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted NPs on the functional and pathological manifestations of the disease. RESULTS: Transplanted hESC-derived NPs significantly reduced the clinical signs of EAE. Histological examination showed migration of the transplanted NPs to the host white matter, however, differentiation to mature oligodendrocytes and remyelination were negligible. Time course analysis of the evolution and progression of CNS inflammation and tissue injury showed an attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. Co-culture experiments showed that hESC-derived NPs inhibited the activation and proliferation of lymph node-derived T cells in response to nonspecific polyclonal stimuli. CONCLUSIONS: The therapeutic effect of transplantation was not related to graft or host remyelination but was mediated by an immunosuppressive neuroprotective mechanism. The attenuation of EAE by hESC-derived NPs, demonstrated here, may serve as the first step towards further developments of hESC for cell therapy in MS
SC3: consensus clustering of single-cell RNA-seq data
Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.V.Y.K., T.A., A.Y. and M.H. are supported by Wellcome Trust Grants. K.N.N. is supported by the Wellcome Trust Strategic Award 'Single cell genomics of mouse gastrulation'. M.T.S. acknowledges support from FRS-FNRS; the Belgian Network DYSCO (Dynamical Systems, Control and Optimisation), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian State Science Policy Office; and the ARC (Action de Recherche Concerte) on Mining and Optimization of Big Data Models, funded by the Wallonia-Brussels Federation. M.B. acknowledges support from EPSRC (grant EP/N014529/1). T.C. was funded through a core funded fellowship by the Sanger Institute and a Chancellor′s fellowship from the University of Edinburgh. K.K. and A.R.G. are supported by Bloodwise (grant ref. 13003), the Wellcome Trust (grant ref. 104710/Z/14/Z), the Medical Research Council, the Kay Kendall Leukaemia Fund, the Cambridge NIHR Biomedical Research Center, the Cambridge Experimental Cancer Medicine Centre, the Leukemia and Lymphoma Society of America (grant ref. 07037) and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute. W.R. was supported by BBSRC (grant ref. BB/K010867/1), the Wellcome Trust (grant ref. 095645/Z/11/Z), EU BLUEPRINT and EpiGeneSys
The “Hit and Run” Hypothesis for Alzheimer’s Disease Pathogenesis
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder affecting millions worldwide. Emerging research has challenged the conventional notion of a direct correlation between amyloid deposition and neurodegeneration in AD. Recent studies have suggested that amyloid and Tau deposition act as a central nervous system (CNS) innate immune driver event, inducing chronic microglial activation that increases the susceptibility of the AD brain to the neurotoxicity of infectious insults. Although modifiable risk factors account for up to 50% of AD risk, the mechanisms by which they interact with the core process of misfolded protein deposition and neuroinflammation in AD are unclear and require further investigation. This update introduces a novel perspective, suggesting that modifiable risk factors act as external insults that, akin to infectious agents, cause neurodegeneration by inducing recurrent acute neurotoxic microglial activation. This pathological damage occurs in AD pathology-primed regions, creating a “hit and run” mechanism that leaves no discernible pathological trace of the external insult. This model, highlighting microglia as a pivotal player in risk factor-mediated neurodegeneration, offers a new point of view on the complex associations of modifiable risk factors and proteinopathy in AD pathogenesis, which may act in parallel to the thoroughly studied amyloid-driven Tau pathology, and strengthens the therapeutic rationale of combining immune modulation with tight control of risk factor-driven insults
Brain Region-Dependent Rejection of Neural Precursor Cell Transplants
The concept of CNS as an immune-privileged site has been challenged by the occurrence of immune surveillance and allogeneic graft rejection in the brain. Here we examined whether the immune response to allogeneic neural grafts is determined by the site of implantation in the CNS. Dramatic regional differences were observed between immune responses to allogeneic neural precursor/stem cell (NPC) grafts in the striatum vs. the hippocampus. Striatal grafts were heavily infiltrated with IBA-1+ microglia/macrophages and CD3+ T cells and completely rejected. In contrast, hippocampal grafts exhibited milder IBA-1+ cell infiltration, were not penetrated efficiently by CD3+ cells, and survived efficiently for at least 2 months. To evaluate whether the hippocampal protective effect is universal, astrocytes were then transplanted. Allogeneic astrocyte grafts elicited a vigorous rejection process from the hippocampus. CD200, a major immune-inhibitory signal, plays an important role in protecting grafts from rejection. Indeed, CD200 knock out NPC grafts were rejected more efficiently than wild type NPCs from the striatum. However, lack of CD200 expression did not elicit NPC graft rejection from the hippocampus. In conclusion, the hippocampus has partial immune-privilege properties that are restricted to NPCs and are CD200-independent. The unique hippocampal milieu may be protective for allogeneic NPC grafts, through host-graft interactions enabling sustained immune-regulatory properties of transplanted NPCs. These findings have implications for providing adequate immunosuppression in clinical translation of cell therapy
Physical exercise therapy for autoimmune neuroinflammation : Application of knowledge from animal models to patient care.
Physical exercise (PE) impacts various autoimmune diseases. Accordingly, clinical trials demonstrated the safety of PE in multiple sclerosis (MS) patients and indicated beneficial outcomes. There is also an increasing body of research on the beneficial effects of exercise on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and various mechanisms underlying these effects were suggested. However, despite the documented favorable impact of PE on our health, we still lack a thorough understanding of its effects on autoimmune neuroinflammation and specific guidelines of PE therapy for MS patients are lacking. To that end, current findings on the impact of PE on autoimmune neuroinflammation, both in human MS and animal models are reviewed. The concept of personalized PE therapy for autoimmune neuroinflammation is discussed, and future research for providing biological rationale for clinical trials to pave the road for precise PE therapy in MS patients is described
Growth and fate of PSA-NCAM+ precursors of the postnatal brain
Oligodendrocyte-type 2 astrocyte (O-2A) lineage cells are derived from multipotential stem cells of the developing CNS. Precursors of O-2A progenitors express the polysialylated (PSA) form of the neural cell adhesion molecule (NCAM) and are detected in neonatal rat brain glial cultures. It is unclear how such PSA-NCAM � “pre-progenitors ” are related to neural stem cells and whether they still have the potential to differentiate along several neural lineages. Here we isolated PSA-NCAM� pre-progenitor cells from glial cultures by immunopanning and found that most of these cells expressed nestin and PDGFreceptor-� but not O-2A antigens. PSA-NCAM � cells synthesized transcripts for fibroblast growth factor (FGF) receptors 1, 2, and 3 and responded to FGF2 by survival and proliferation, growing into large clusters resembling neural spheres. FGF2induced proliferation of PSA-NCAM � pre-progenitors was significantl
- …