6 research outputs found

    Hybrid morphological-convolutional neural networks for computer-aided diagnosis

    Get PDF
    Training deep Convolutional Neural Networks (CNNs) presents challenges in terms of memory requirements and computational resources, often resulting in issues such as model overfitting and lack of generalization. These challenges can only be mitigated by using an excessive number of training images. However, medical image datasets commonly suffer from data scarcity due to the complexities involved in their acquisition, preparation, and curation. To address this issue, we propose a compact and hybrid machine learning architecture based on the Morphological and Convolutional Neural Network (MCNN), followed by a Random Forest classifier. Unlike deep CNN architectures, the MCNN was specifically designed to achieve effective performance with medical image datasets limited to a few hundred samples. It incorporates various morphological operations into a single layer and uses independent neural networks to extract information from each signal channel. The final classification is obtained by utilizing a Random Forest classifier on the outputs of the last neural network layer. We compare the classification performance of our proposed method with three popular deep CNN architectures (ResNet-18, ShuffleNet-V2, and MobileNet-V2) using two training approaches: full training and transfer learning. The evaluation was conducted on two distinct medical image datasets: the ISIC dataset for melanoma classification and the ORIGA dataset for glaucoma classification. Results demonstrate that the MCNN method exhibits reliable performance in melanoma classification, achieving an AUC of 0.94 (95% CI: 0.91 to 0.97), outperforming the popular CNN architectures. For the glaucoma dataset, the MCNN achieved an AUC of 0.65 (95% CI: 0.53 to 0.74), which was similar to the performance of the popular CNN architectures. This study contributes to the understanding of mathematical morphology in shallow neural networks for medical image classification and highlights the potential of hybrid architectures in effectively learning from medical image datasets that are limited by a small number of case samples

    Incorporating Breast Asymmetry Studies into CADx Systems

    Get PDF
    Breast cancer is one of the global leading causes of death among women, and an early detection is of uttermost importance to reduce mortality rates. Screening mammograms, in which radiologists rely only on their eyesight, are one of the most used early detection methods. However, characteristics, such as the asymmetry between breasts, a feature that could be very difficult to visually quantize, is key to breast cancer detection. Due to the highly heterogeneous and deformable structure of the breast itself, incorporating asymmetry measurements into an automated detection system is still a challenge. In this study, we proposed the use of a bilateral registration algorithm as an effective way to automatically measure mirror asymmetry. Furthermore, this information was fed to a machine learning algorithm to improve the accuracy of the model. In this study, 449 subjects (197 with calcifications, 207 with masses, and 45 healthy subjects) from a public database were used to train and evaluate the proposed methodology. Using this procedure, we were able to independently identify subjects with calcifications (accuracy = 0.825, AUC = 0.882) and masses (accuracy = 0.698, AUC = 0.807) from healthy subjects

    Quantitative 3D MRI reveals limited intra-lesional bony overgrowth at1 year after microfracture-based cartilage repair

    No full text
    Objective: Intra-lesional bony overgrowth (BO) identified during or following cartilage repair treatment is being frequently described through subjective reports focusing primarily on incidence. Our objective was to quantify the exact volume of intra-lesional BO at 12 months post-cartilage repair treatment, to determine if a correlation exists between the extent of BO and clinical outcomes, and to visualize and characterize the BO. Design: MRI scans were systematically obtained during a randomized clinical trial for cartilage repair (Stanish etal., 2013) that compared two microfracture-based treatments in 78 patients. Semi-automated morphological segmentation of pre-treatment, 1 and 12 months post-treatment scans utilizing a programmed anatomical atlas for all knee bone and cartilage structures permitted three-dimensional reconstruction, quantitative analysis, as well as qualitative characterization and artistic visualization ofBO. Results: Limited intra-lesional BO representing only 5.8±5.7% of the original debrided cartilage lesion volume was found in 78 patients with available MRIs at 12 months. The majority (80%) of patients had very little BO (<10%). Most occurrences of BO carried either spotty (56.4%) or planar (6.4%) morphological features, and the remaining balance (37.2%) was qualitatively unobservable by eye. Pre-existing BO recurred at 12 months in the same intra-lesional location in 36% of patients. No statistical correlations were found between BO and clinical outcomes. Conclusions: Intra-lesional BO following microfracture-based treatments may not be as severe as previously believed, its incidence is partly explained by pre-existing conditions, and no relationship to clinical outcomes exists at 12 months. Morphologically, observable BO was categorized as comprising either spotty or planar bone. © 2014 Osteoarthritis Research Society International

    Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI

    No full text
    In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. © 2015 Jorge I. Galván-Tejada et al

    SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis

    No full text
    Validation of multi-gene biomarkers for clinical outcomes is one of the most important issues for cancer prognosis. An important source of information for virtual validation is the high number of available cancer datasets. Nevertheless, assessing the prognostic performance of a gene expression signature along datasets is a difficult task for Biologists and Physicians and also time-consuming for Statisticians and Bioinformaticians. Therefore, to facilitate performance comparisons and validations of survival biomarkers for cancer outcomes, we developed SurvExpress, a cancer-wide gene expression database with clinical outcomes and a web-based tool that provides survival analysis and risk assessment of cancer datasets. The main input of SurvExpress is only the biomarker gene list. We generated a cancer database collecting more than 20,000 samples and 130 datasets with censored clinical information covering tumors over 20 tissues. We implemented a web interface to perform biomarker validation and comparisons in this database, where a multivariate survival analysis can be accomplished in about one minute. We show the utility and simplicity of SurvExpress in two biomarker applications for breast and lung cancer. Compared to other tools, SurvExpress is the largest, most versatile, and quickest free tool available. SurvExpress web can be accessed in http://bioinformatica.mty.itesm.mx/SurvExpress (a tutorial is included). The website was implemented in JSP, JavaScript, MySQL, and R. © 2013 Aguirre-Gamboa et al

    Covid-19 classification using thermal images

    No full text
    Significance: There is a scarcity of published research on the potential role of thermal imaging in the remote detection of respiratory issues due to coronavirus disease-19 (COVID-19). This is a comprehensive study that explores the potential of this imaging technology resulting from its convenient aspects that make it highly accessible: it is contactless, noninvasive, and devoid of harmful radiation effects, and it does not require a complicated installation process. Aim: We aim to investigate the role of thermal imaging, specifically thermal video, for the identification of SARS-CoV-2-infected people using infrared technology and to explore the role of breathing patterns in different parts of the thorax for the identification of possible COVID-19 infection. Approach: We used signal moment, signal texture, and shape moment features extracted from five different body regions of interest (whole upper body, chest, face, back, and side) of images obtained from thermal video clips in which optical flow and super-resolution were used. These features were classified into positive and negative COVID-19 using machine learning strategies. Results: COVID-19 detection for male models [receiver operating characteristic (ROC) area under the ROC curve (AUC) = 0.605 95% confidence intervals (CI) 0.58 to 0.64] is more reliable than for female models (ROC AUC = 0.577 95% CI 0.55 to 0.61). Overall, thermal imaging is not very sensitive nor specific in detecting COVID-19; the metrics were below 60% except for the chest view from males. Conclusions: We conclude that, although it may be possible to remotely identify some individuals affected by COVID-19, at this time, the diagnostic performance of current methods for body thermal imaging is not good enough to be used as a mass screening tool
    corecore