20 research outputs found

    An Outlook on the Localisation and Structure-Function Relationships of R Proteins in Solanum

    Get PDF
    The co-evolution of plants and plant-pathogens shaped a multi-layered defence system in plants, in which Resistance proteins (R proteins) play a significant role. A fundamental understanding of the functioning of these R proteins and their position in the broader defence system of the plant is essential. Sub-project 3 of the BIOEXPLOIT programme studies how R proteins are activated upon effector recognition and how recognition is conveyed in resistance signalling pathways, using the solanaceous R proteins Rx1 (from S. tuberosum spp. andigena; conferring extreme resistance against Potato Virus X), I-2 (from S. lycopersicon; mediating resistance to Fusarium oxysporum) and Mi-1.2 (from S. lycopersicon; conferring resistance to Meloidogyne incognita) as model systems. The results obtained in this project will serve as a model for other R proteins and will be translated to potential applications or alternative strategies for disease resistance. These include the modification of the recognition specificity of R proteins with the aim to obtain broad spectrum resistance to major pathogens in potato

    A one-step affinity-purification protocol to purify NB-LRR immune receptors from plants that mediate resistance to fungal pathogens

    No full text
    Nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors from plants confer resistance to fungal pathogens and many other pathogenic organisms. Their low expression makes it challenging to purify these receptors from plants in sufficient quantities to be able to identify interacting proteins by mass spectrometry. Here we describe a protocol to affinity-purify recombinant NB-LRR immune receptors, fused to the streptavidin-binding peptide tag

    The diverse roles of NB-LRR proteins in plants

    No full text
    Plant innate immunity relies on specialised immune receptors that can detect and defend against a wide variety of microbes. The first group of receptors comprises the transmembrane pathogen- or pattern-recognition receptors (PRRs), which respond to slowly evolving pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). The second group of immune receptors is formed by the polymorphic disease resistance (R) proteins that detect microbe-derived effector proteins. Most R proteins are members of the nucleotide binding leucine-rich repeat (NB-LRR) class. Although this class comprises one of the biggest protein families in plants, relatively few have been functionally characterised to date. The question rises whether all NB-LRRs function as immune receptors, or that they might have alternative functions. The answer is: yes, they do have alternative functions that are different from the immune receptor function. This review summarises the current knowledge about non-immune receptor signal transduction functions of NB-LRRs in plants

    To nibble at plant resistance proteins

    No full text
    To intercept invading microbes that threaten growth and reproduction, plants evolved a sophisticated innate immune system. Recognition of specialized pathogens is mediated by resistance proteins that function as molecular switches. Pathogen perception by these multidomain proteins seems to trigger a series of conformational changes dependent on nucleotide exchange. The activated resistance protein switches on host defenses, often culminating in the death of infected cells. Given their control over life and death, activity of these proteins requires tight regulation that involves intramolecular interactions between the various domains

    Resistance proteins: Scouts of the plant innate immune system

    Get PDF
    Recognition of non-self in plants is mediated by specialised receptors that upon pathogen perception trigger induction of host defence responses. Primary, or basal, defence is mainly triggered by trans-membrane receptors that recognise conserved molecules released by a variety of (unrelated) microbes. Pathogens can overcome these basal defences by the secretion of specific effectors. Subsequent recognition of these effectors by specialised receptors (called resistance proteins) triggers induction of a second layer of plant defence responses. These responses are qualitatively similar to primary defence responses; however, they are generally faster and stronger. Here we give an overview of the predicted (domain) structures of resistance proteins and their proposed mode of action as molecular switches of plant innate immunity. We also highlight recent advances revealing that some of these proteins act in the plant nucleus as transcriptional co-regulators and that crosstalk can occur between members of different resistance protein families

    Resistance proteins: molecular switches of plant defence.

    No full text
    Specificity of the plant innate immune system is often conferred by resistance (R) proteins. Most R proteins contain leucine-rich repeats (LRRs), a central nucleotide-binding site (NBS) and a variable amino-terminal domain. The LRRs are mainly involved in recognition, whereas the amino-terminal domain determines signalling specificity. The NBS forms part of a nucleotide binding (NB)-ARC domain that presumably functions as a molecular switch. The conserved nature of NB-ARC proteins makes it possible to map mutations of R protein residues onto the crystal structures of related NB-ARC proteins, providing hypotheses for the functional roles of these residues. A functional model emerges in which the LRRs control the molecular state of the NB-ARC domain. Pathogen recognition triggers nucleotide-dependent conformational changes that might induce oligomerisation, thereby providing a scaffold for activation of downstream signalling components
    corecore