769 research outputs found

    Tailoring Dielectric Properties of Multilayer Composites Using Spark Plasma Sintering

    Get PDF
    A straightforward and simple way to produce well-densified ferroelectric ceramic composites with a full control of both architecture and properties using spark plasma sintering (SPS) is proposed. SPS main outcome is indeed to obtain high densification at relatively low temperatures and short treatment times thus limiting interdiffusion in multimaterials. Ferroelectric/dielectric (BST64/MgO/BST64) multilayer ceramic densified at 97% was obtained, with unmodified Curie temperature, a stack dielectric constant reaching 600, and dielectric losses dropping down to 0.5%, at room-temperature. This result ascertains SPS as a relevant tool for the design of functional materials with tailored properties

    QuantEYE: The Quantum Optics Instrument for OWL

    Full text link
    QuantEYE is designed to be the highest time-resolution instrument on ESO:s planned Overwhelmingly Large Telescope, devised to explore astrophysical variability on microsecond and nanosecond scales, down to the quantum-optical limit. Expected phenomena include instabilities of photon-gas bubbles in accretion flows, p-mode oscillations in neutron stars, and quantum-optical photon bunching in time. Precise timescales are both variable and unknown, and studies must be of photon-stream statistics, e.g., their power spectra or autocorrelations. Such functions increase with the square of the intensity, implying an enormously increased sensitivity at the largest telescopes. QuantEYE covers the optical, and its design involves an array of photon-counting avalanche-diode detectors, each viewing one segment of the OWL entrance pupil. QuantEYE will work already with a partially filled OWL main mirror, and also without [full] adaptive optics.Comment: 7 pages; Proceedings from meeting 'Instrumentation for Extremely Large Telescopes', held at Ringberg Castle, July 2005 (T.Herbst, ed.

    Testing Strong Field QED Close to the Fully Nonperturbative Regime Using Aligned Crystals

    No full text
    Processes occurring in the strong-field regime of QED are characterized by background electromagnetic fields of the order of the critical field Fcr=m2c3/ℏ∣e∣F_{cr}=m^2c^3/\hbar|e| in the rest frame of participating charges. It has been conjectured that if in their rest frame electrons/positrons experience field strengths of the order of Fcr/α3/2≈1600 FcrF_{cr}/\alpha^{3/2}\approx 1600\,F_{cr}, with α≈1/137\alpha\approx 1/137 being the fine-structure constant, their effective coupling with radiation becomes of the order of unity. Here we show that channeling radiation by ultrarelativistic electrons with energies of the order of a few TeV on thin tungsten crystals allows to test the predictions of QED close to this fully non-perturbative regime by measuring the angularly resolved single photon intensity spectrum. The proposed setup features the unique characteristics that essentially all electrons 1) undergo at most a single photon emission and 2) experience at the moment of emission and in the angular region of interest the maximum allowed value of the field strength, which at 2  TeV2\;\text{TeV} exceeds FcrF_{cr} by more than two orders of magnitudes in their rest frame

    Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides

    Get PDF
    The kinetics and the metabolism of Bifidobacterium adolescentis MB 239 growing on galactooligosaccharides (GOS), lactose, galactose, and glucose were investigated. An unstructured unsegregated model for growth in batch cultures was developed, and kinetic parameters were calculated with a recursive algorithm. The growth rate and cellular yield were highest on galactose, followed by lactose and GOS, and were lowest on glucose. Lactate, acetate, and ethanol yields allowed the calculation of carbon fluxes toward fermentation products. Distributions between two- and three-carbon products were similar on all the carbohydrates (55 and 45%, respectively), but ethanol yields were different on glucose, GOS, lactose, and galactose, in decreasing order of production. Based on the stoichiometry of the fructose-6-phosphate shunt and on the carbon distribution among the products, the ATP yield was calculated. The highest yield was obtained on galactose, while the yields were 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondence among ethanol production, low ATP yields, and low biomass production was established, demonstrating that carbohydrate preferences may result from different distributions of carbon fluxes through the fermentative pathway. During the fermentation of a GOS mixture, substrate selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were the first to be consumed, while a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that beta(1-4) galactosides can be hydrolyzed before they are taken up

    The molecular size continuum of soil organic phosphorus and its chemical associations

    Get PDF
    The chemical nature of most organic P (Porg) in soil remains ‘unresolved’ but is accounted for by a broad signal in the phosphomonoester region of solution 31P nuclear magnetic resonance (NMR) spectra. The molecular size range of this broad NMR signal and its molecular structure remain unclear. The aim of this study was to elucidate the chemical nature of Porg with increasing molecular size in soil extracts combining size exclusion chromatography (SEC) with solution 31P NMR spectroscopy. Gel-filtration SEC was carried out on NaOH-EDTA extracts of four soils (range 238-1135 mg Porg/kgsoil) to collect fractions with molecular sizes of 70 kDa. These were then analysed by NMR spectroscopy. Organic P was detected across the entire molecular size continuum from 70 kDa. Concentrations of Porg in the >10kDa fraction ranged from 107 to 427 mg P/kgsoil and exhibited on average three to four broad signals in the phosphomonoester region of NMR spectra. These broad signals were most prominent in the 10-20 and 20-50 kDa fractions, accounting for on average 77 % and 74 % of total phosphomonoesters, respectively. Our study demonstrates that the broad signal is present in all investigated molecular size fractions and comprises on average three to four components of varying NMR peak line width (20 to 250 Hz). The stereoisomers myo- and scyllo-inositol hexakisphosphates (IP6) were also present across multiple molecular size ranges but were predominant in the 5-10 kDa fraction. The proportion of IP associated with large molecular size fractions >10 kDa was on average 23 % (SD=39 %) of total IP across all soils. These findings suggest that stabilisation of IP in soil includes processes associated with the organic phase

    Chemical characterization and surface properties of a new bioemulsifier produced by Pedobacter sp. strain MCC-Z

    Get PDF
    A novel biopolymer was described in the form of an extracellular polysaccharide (EPS) by Pedobacter sp.strain MCC-Z, a member of a bacterial genus not previously described as an emulsifier producer. Thenew biomolecule was extracted, purified and characterized, and its surface and emulsifying propertieswere evaluated. The purified bioemulsifier, named Pdb-Z, showed high emulsifying activity (E24% = 64%)and reduced the surface tension of water up to 41 mN/m with a critical micelle concentration value of2.6 mg/mL. The chemical characterization of Pdb-Z was performed using1H NMR, FT-IR, HPLC/MS/MS andGC/MS. Pdb-Z was found to contain 67% of carbohydrates, consisting mainly of galactose and minor quan-tities of talose, 30% of lipids, being pentadecanoic acid the major lipidic constituent, and 3% of proteins. Thebioemulsifier was a glycolipids-protein complex with an estimated molecular mass of 106Da. Further-more, Pdb-Z emulsified pure aliphatic and aromatic hydrocarbons as well as diesel more efficiently thancommercial synthetic surfactants, used for comparison. Our results suggest Pdb-Z has interesting prop-erties for applications in remediation of hydrocarbon-contaminated environments and bioremediation processes

    Photon Orbital Angular Momentum and Mass in a Plasma Vortex

    Full text link
    We analyse the Anderson-Higgs mechanism of photon mass acquisition in a plasma and study the contribution to the mass from the orbital angular momentum acquired by a beam of photons when it crosses a spatially structured charge distribution. To this end we apply Proca-Maxwell equations in a static plasma with a particular spatial distribution of free charges, notably a plasma vortex, that is able to impose orbital angular momentum (OAM) onto light. In addition to the mass acquisition of the conventional Anderson-Higgs mechanism, we find that the photon acquires an additional mass from the OAM and that this mass reduces the Proca photon mass.Comment: Four pages, no figures. Error corrections, improved notation, refined derivation

    Space-to-ground quantum-communication using an optical ground station: a feasibility study

    Full text link
    We have tested the experimental prerequisites for a Space-to-Ground quantum communication link between satellites and an optical ground station. The feasibility of our ideas is being assessed using the facilities of the ASI Matera Laser Ranging Observatory (MLRO). Specific emphasis is put on the necessary technological modifications of the existing infrastructure to achieve single photon reception from an orbiting satellite.Comment: 8 pages 5 figures, SPIE proceedings Quantum Communications and Quantum Imaging II conference in Denver, July 200

    A data-driven energy platform: from energy performance certificates to human-readable knowledge through dynamic high-resolution geospatial maps

    Get PDF
    The energy performance certificate (EPC) is a document that certifies the average annual energy consumption of a building in standard conditions and allows it to be classified within a so-called energy class. In a period such as this, when greenhouse gas emissions are of considerable importance and where the objective is to improve energy security and reduce energy costs in our cities, energy certification has a key role to play. The proposed work aims to model and characterize residential buildings’ energy efficiency by exploring heterogeneous, geo-referenced data with different spatial and temporal granularity. The paper presents TUCANA (TUrin Certificates ANAlysis), an innovative data mining engine able to cover the whole analytics workflow for the analysis of the energy performance certificates, including cluster analysis and a model generalization step based on a novel spatial constrained K-NN, able to automatically characterize a broad set of buildings distributed across a major city and predict different energy-related features for new unseen buildings. The energy certificates analyzed in this work have been issued by the Piedmont Region (a northwest region of Italy) through open data. The results obtained on a large dataset are displayed in novel, dynamic, and interactive geospatial maps that can be consulted on a web application integrated into the system. The visualization tool provides transparent and human-readable knowledge to various stakeholders, thus supporting the decision-making process

    Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats

    Get PDF
    In agricultural landscapes, arthropods provide essential ecosystem services such as biological pest control and pollination. Intensified crop management practices and homogenization of landscapes have led to declines among such organisms. Semi-natural habitats, associated with high numbers of these organisms, are increasingly lost from agricultural landscapes but diversification by increasing crop diversity has been proposed as a way to reverse observed arthropod declines and thus restore ecosystem services. However, whether or not an increase in the diversity of crop types within a landscape promotes diversity and abundances of pollinating and predaceous arthropods, and how semi-natural habitats might modify this relationship, are not well understood. To test how crop diversity and the proportion of semi-natural habitats within a landscape are related to the diversity and abundance of beneficial arthropod communities, we collected primary data from seven studies focusing on natural enemies (carabids and spiders) and pollinators (bees and hoverflies) from 154 crop fields in Southern Sweden between 2007 and 2017. Crop diversity within a 1-km radius around each field was positively related to the Shannon diversity index of carabid and pollinator communities in landscapes rich in semi-natural habitats. Abundances were mainly affected by the proportion of semi-natural habitats in the landscape, with decreasing carabid and increasing pollinator numbers as the proportion of this habitat type increased. Spiders showed no response to either crop diversity or the proportion of semi-natural habitats. Synthesis and applications. We show that the joint effort of preserving semi-natural habitats and promoting crop diversity in agricultural landscapes is necessary to enhance communities of natural enemies and pollinators. Our results suggest that increasing the diversity of crop types can contribute to the conservation of service-providing arthropod communities, particularly if the diversification of crops targets complex landscapes with a high proportion of semi-natural habitats
    • 

    corecore