125 research outputs found
Pediatric diabetes consortium T1D New Onset ( NeOn ) study: clinical outcomes during the first year following diagnosis
Objective There have been few prospective, multicenter studies investigating the natural history of type 1 diabetes ( T1D ) from the time of diagnosis. The objective of this report from the Pediatric Diabetes Consortium ( PDC ) T1D New Onset ( NeOn ) study was to assess the natural history and clinical outcomes in children during the first year after diagnosis of T1D . Research design and methods: Clinical measures from the first year following diagnosis were analyzed for 857 participants (mean age 9.1 yr, 51% female, 66% non‐Hispanic White) not participating in an intervention study who had a HbA1c result at 12 months. Results Mean HbA1c ± SD was 102 ± 25 mmol/mol (11.4 ± 2.3%) at diagnosis, 55 ± 12 mmol/mol (7.2 ± 1.1%) at 3 months, 56 ± 15 mmol/mol (7.3 ± 1.3%) at 6 months and 62 ± 16 mmol/mol (7.8 ± 1.5%) at 12 months from diagnosis. A severe hypoglycemic ( SH ) event occurred in 31 (4%) participants (44 events, 5.2 events per 100 person‐years). Diabetic ketoacidosis ( DKA ) not including diagnosis occurred in 10 (1%) participants (13 events, 1.5 events per 100 person‐years). Conclusions After onset of T1D , mean HbA1c reaches its nadir at 3–6 months with a gradual increase through 12 months. SH and DKA are uncommon but still occur during the first year with T1D . Data from large cohorts, such as the PDC T1D NeOn study, provide important insights into the course of T1D during the first year following diagnosis, which will help to inform the development of models to target future interventions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107374/1/pedi12068.pd
Effect of a Successful Intensive Lifestyle Program on Insulin Sensitivity and Glucose Tolerance in Obese Youth
OBJECTIVE—To evaluate the impact on glucose metabolism of a lifestyle program (the Yale Bright Bodies Program) for obese children
Clinical outcomes in youth beyond the first year of type 1 diabetes: Results of the Pediatric Diabetes Consortium (PDC) type 1 diabetes new onset (NeOn) study
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138914/1/pedi12459.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138914/2/pedi12459_am.pd
Vitamin D status in youth with type 1 and type 2 diabetes enrolled in the Pediatric Diabetes Consortium (PDC) is not worse than in youth without diabetes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134500/1/pedi12340.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134500/2/pedi12340_am.pd
A cross‐sectional view of the current state of treatment of youth with type 2 diabetes in the USA: enrollment data from the Pediatric Diabetes Consortium Type 2 Diabetes Registry
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136377/1/pedi12377_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136377/2/pedi12377.pd
State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018
Objective: To provide a snapshot of the profile of adults and youth with type 1 diabetes (T1D) in the United States and assessment of longitudinal changes in T1D management and clinical outcomes in the T1D Exchange registry.
Research Design and Methods: Data on diabetes management and outcomes from 22,697 registry participants (age 1–93 years) were collected between 2016 and 2018 and compared with data collected in 2010–2012 for 25,529 registry participants.
Results: Mean HbA1c in 2016–2018 increased from 65 mmol/mol at the age of 5 years to 78 mmol/mol between ages 15 and 18, with a decrease to 64 mmol/mol by age 28 and 58–63 mmol/mol beyond age 30. The American Diabetes Association (ADA) HbA1c goal of 10-fold in children <12 years old. HbA1c levels were lower in CGM users than nonusers. Severe hypoglycemia was most frequent in participants ≥50 years old and diabetic ketoacidosis was most common in adolescents and young adults. Racial differences were evident in use of pumps and CGM and HbA1c levels.
Conclusions: Data from the T1D Exchange registry demonstrate that only a minority of adults and youth with T1D in the United States achieve ADA goals for HbA1c
The obesity epidemic in 32,936 youth with type 1 diabetes (T1D) in the German/Austrian DPV and US T1D Exchange (T1DX) registries
Objective
To examine the current extent of the obesity problem in 2 large pediatric clinical registries in the US and Europe and to examine the hypotheses that increased body mass index (BMI) z-scores (BMIz) are associated with greater hemoglobin A1c (HbA1c) and increased frequency of severe hypoglycemia in youth with type 1 diabetes (T1D).
Study design
International (World Health Organization) and national (Centers for Disease Control and Prevention/German Health Interview and Examination Survey for Children and Adolescents) BMI references were used to calculate BMIz in participants (age 2-<18 years and ≥1 year duration of T1D) enrolled in the T1D Exchange (n = 11 435) and the Diabetes Prospective Follow-up (n = 21 501). Associations between BMIz and HbA1c and severe hypoglycemia were assessed.
Results
Participants in both registries had median BMI values that were greater than international and their respective national reference values. BMIz was significantly greater in the T1D Exchange vs the Diabetes Prospective Follow-up (P < .001). After stratification by age-group, no differences in BMI between registries existed for children 2-5 years, but differences were confirmed for 6- to 9-, 10- to 13-, and 14- to 17-year age groups (all P < .001). Greater BMIz were significantly related to greater HbA1c levels and more frequent occurrence of severe hypoglycemia across the registries, although these associations may not be clinically relevant.
Conclusions
Excessive weight is a common problem in children with T1D in Germany and Austria and, especially, in the US. Our data suggest that obesity contributes to the challenges in achieving optimal glycemic control in children and adolescents with T1D
Hemoglobin A1c (HbA1c) changes over time among adolescent and young adult participants in the T1D exchange clinic registry
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122422/1/pedi12295_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122422/2/pedi12295.pd
Race, Socioeconomic Status, and Treatment Center Are Associated with Insulin Pump Therapy in Youth in the First Year Following Diagnosis of Type 1 Diabetes
Background: Increasing numbers of children and adolescents with type 1 diabetes (T1D) have been placed on insulin pump therapy. Nevertheless, data are limited regarding patterns of pump use during the first year of treatment and the clinical and socioeconomic factors associated with early use of pump therapy. Therefore, we sought to determine factors associated with pump therapy within the first year of diagnosis in youth enrolled in the Pediatric Diabetes Consortium (PDC) T1D New-Onset (NeOn) Study. Subjects and Methods: The NeOn Study includes youth <19 years old at T1D diagnosis who have been followed from the time of diagnosis at seven U.S. pediatric diabetes centers. Cox regression was used to determine factors associated with transition from injection to pump therapy during the first year of T1D in 1,012 participants. Results: Twenty-seven percent (n=254) of participants began pump therapy within the first year of diagnosis, ranging from 18% to 59% among the seven centers. After adjusting for center effect, factors associated with pump use in multivariate analysis included private health insurance (37% vs. 7%; P<0.001), having annual household income over $100,000 (50% vs. 15%; P<0.001), and non-Hispanic white race (36% vs. 11%; P<0.001). The hemoglobin A1c level did not appear to influence the decision to initiate pump use. Conclusions: Participants of non-Hispanic white race and higher socioeconomic status were more likely to be placed on pumps during the first year. Further investigations are needed to gain a better understanding of barriers to use of pumps in youth with T1D, especially in disadvantaged and minority families.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140353/1/dia.2013.0132.pd
Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy
Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, we used 13C NMR spectroscopy after infusing enriched D-[1-13C]glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia (range, 4.5-12.1 mM) in six healthy children (13-16 years old). Brain glucose concentrations averaged 1.0 +/- 0.1 mumol/ml at euglycemia (4.7 +/- 0.3 mM plasma) and 1.8-2.7 mumol/ml at hyperglycemia (7.3-12.1 mM plasma). Michaelis-Menten parameters of transport were calculated to be Kt = 6.2 +/- 1.7 mM and Tmax = 1.2 +/- 0.1 mumol/g.min from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels greater than 3 mM
- …