8 research outputs found

    Effect Of Dietary Protein Levels On The Genesis Of Repair Tissue In Rats [influência Do Teor Protéico Da Dieta Sobre A Gênese Do Tecido De Reparo Em Ratos.]

    No full text
    The objective of this study was to verify if the diet protein level affects the genesis of the repair tissue in rats submitted to a poly-chloro-vinyl (PVC) sponge implantation, as well as to analyse the possible alterations in the synthesis of the mucopolysaccharides acids (glucosaminoglycans) by the histophotometry technique. Forty five Wistar weanling male rats, at 21 days of age, were divided into three experimental groups; the groups were fed diets al 6%, 15% and 40% protein level from casein source, during at 69 days period. The animals which received the low protein diet (6%) presented an inhibition in the evolution and maturation of the granulation tissue mainly in the 4th, 7th and 10th days after the sponge PVC implantation. It was also observed that there was less infiltration of the inflammatory cells, less fibroblasts proliferation, reduction of the collagen fibers synthesis, neovascularization decreased and an inhibition of the mucopolysaccharide acids synthesis.42441441

    Ascending Nociceptive Control Contributes To The Antinociceptive Effect Of Acupuncture In A Rat Model Of Acute Pain

    No full text
    Acupuncture-induced analgesia depends on the activation of endogenous pain modulation pathways. In this study, we asked whether ascending nociceptive control (ANC), a form of pain-induced analgesia, contributes to the antinociceptive effect of acupuncture. To answer this question, we tested the ability of procedures that block ANC-induced analgesia, at peripheral, spinal, nucleus accumbens and rostral ventral medulla levels, to block acupuncture-induced analgesia. Acupuncture at ST36 (Zusanli), a widely used acupoint located in the hind limb, induced potent heterosegmental antinociception in the orofacial formalin test. The magnitude of this antinociceptive effect was similar to that induced by an intraplantar injection of capsaicin, a procedure classically used to activate ANC. The antinociceptive effect of acupuncture was blocked by sciatic C-fibers depletion (1% perineural capsaicin), spinal administration of a μ-opioid (Cys2,Tyr3,Orn5,Pen7amide,.2 μg) or of a GABAA (bicuculline,.3 μg) receptor antagonist, intra-nucleus accumbens administration of a μ-opioid receptor antagonist (Cys2,Tyr3,Orn5,Pen7amide, 1 μg), or intrarostral ventral medulla administration of a nicotinic acetylcholine receptor antagonist (mecamylamine,.6 μg). In addition, acupuncture at ST36 and/or upper lip formalin induced c-Fos expression in the nucleus accumbens and in rostral ventral medulla. On the basis of these results, we propose that ANC contributes to the antinociceptive effect of acupuncture. Perspective This article presents a novel mechanism of acupuncture analgesia, contributing to the understanding of its scientific basis. Because ANC is a pain modulation pathway activated by peripheral noxious stimulation that ascends to supraspinal regions, it could be the link between acupoint stimulation and the central mechanisms underlying acupuncture analgesia. © 2014 by the American Pain Society.154422434Behbehani, M.M., The role of acetylcholine in the function of the nucleus raphe magnus and in the interaction of this nucleus with the periaqueductal gray (1982) Brain Res, 252, pp. 299-307Bing, Z., Villanueva, L., Le Bars, D., Acupuncture and diffuse noxious inhibitory controls: Naloxone-reversible depression of activities of trigeminal convergent neurons (1990) Neuroscience, 37, pp. 809-818Bouhassira, D., Chitour, D., Villaneuva, L., Le Bars, D., The spinal transmission of nociceptive information: Modulation by the caudal medulla (1995) Neuroscience, 69, pp. 931-938Brinkhaus, B., Witt, C.M., Jena, S., Linde, K., Streng, A., Wagenpfeil, S., Irnich, D., Willich, S.N., Acupuncture in patients with chronic low back pain: A randomized controlled trial (2006) Arch Intern Med, 166, pp. 450-457Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D., The capsaicin receptor: A heat-activated ion channel in the pain pathway (1997) Nature, 389, pp. 816-824Chen-Yu, C., Jen-Yi, L., Teh-Hsing, C., Yao-Hui, P., Shu-Chieh, C., Studies on spinal ascending pathway for effect of acupuncture analgesia in rabbits (1975) Sci Sin, 18, pp. 651-658Chen, X.H., Han, J.S., Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors: Another cross-tolerance study (1992) Behav Brain Res, 47, pp. 143-149Chen, X.H., Han, J.S., All three types of opioid receptors in the spinal cord are important for 2/15 Hz electroacupuncture analgesia (1992) Eur J Pharmacol, 211, pp. 203-210Cheng, R.S., Pomeranz, B., Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanismsEndorphin and non-endorphin systems (1979) Life Sci, 25, pp. 1957-1962Cherkin, D.C., Sherman, K.J., Avins, A.L., Erro, J.H., Ichikawa, L., Barlow, W.E., Delaney, K., Deyo, R.A., A randomized trial comparing acupuncture, simulated acupuncture, and usual care for chronic low back pain (2009) Arch Intern Med, 169, pp. 858-866Clement-Jones, V., McLoughlin, L., Tomlin, S., Besser, G.M., Rees, L.H., Wen, H.L., Increased beta-endorphin but not met-enkephalin levels in human cerebrospinal fluid after acupuncture for recurrent pain (1980) Lancet, 2, pp. 946-949Dai, J.L., Zhu, Y.H., Li, X.Y., Huang, D.K., Xu, S.F., C-fos expression during electroacupuncture analgesia in rats - An immunohistochemical study (1992) Acupunct Electrother Res, 17, pp. 165-176De Medeiros, M.A., Canteras, N.S., Suchecki, D., Mello, L.E., Analgesia and c-Fos expression in the periaqueductal gray induced by electroacupuncture at the Zusanli point in rats (2003) Brain Res, 973, pp. 196-204Ferrari, L.F., Gear, R.W., Levine, J.D., Attenuation of activity in an endogenous analgesia circuit by ongoing pain in the rat (2010) J Neurosci, 30, pp. 13699-13706Fields, H., State-dependent opioid control of pain (2004) Nat Rev Neurosci, 5, pp. 565-575Gear, R.W., Levine, J.D., Antinociception produced by an ascending spino-supraspinal pathway (1995) J Neurosci, 15, pp. 3154-3161Gear, R.W., Levine, J.D., Rostral ventral medulla cholinergic mechanism in pain-induced analgesia (2009) Neurosci Lett, 464, pp. 170-172Gear, R.W., Aley, K.O., Levine, J.D., Pain-induced analgesia mediated by mesolimbic reward circuits (1999) J Neurosci, 19, pp. 7175-7181Gilchrist, H.D., Allard, B.L., Simone, D.A., Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats (1996) Pain, 67, pp. 179-188Ha, H., Tan, E.C., Fukunaga, H., Aochi, O., Naloxone reversal of acupuncture analgesia in the monkey (1981) Exp Neurol, 73, pp. 298-303Han, J.S., Acupuncture and endorphins (2004) Neurosci Lett, 361, pp. 258-261Han, J.S., Acupuncture analgesia: Areas of consensus and controversy (2011) Pain, 152, pp. 41-S48Heinricher, M.M., Tavares, I., Leith, J.L., Lumb, B.M., Descending control of nociception: Specificity, recruitment and plasticity (2009) Brain Res Rev, 60, pp. 214-225Huang, C., Wang, Y., Chang, J.K., Han, J.S., Endomorphin and mu-opioid receptors in mouse brain mediate the analgesic effect induced by 2 Hz but not 100 Hz electroacupuncture stimulation (2000) Neurosci Lett, 294, pp. 159-162Ji, R.R., Zhang, Z.W., Zhou, Y., Zhang, Q., Han, J.S., Induction of c-fos expression in the rostral medulla of rats following electroacupuncture stimulation (1993) Int J Neurosci, 72, pp. 183-191Jin, W.Q., Zhou, Z.F., Han, J.S., Inhibition of enkephalins degradation in the nucleus accumbens leads to potentiation of acupuncture and morphine analgesia (1985) Sheng Li Xue Bao, 37, pp. 377-382Kagitani, F., Uchida, S., Hotta, H., Afferent nerve fibers and acupuncture (2010) Auton Neurosci, 157, pp. 2-8Le Bars, D., Dickenson, A.H., Besson, J.M., Diffuse noxious inhibitory controls (DNIC), IEffects on dorsal horn convergent neurones in the rat (1979) Pain, 6, pp. 283-304Li, C., Zhu, L., Li, W., Ji, C., Relationship between the presynaptic depolarization effect of acupuncture and γ-aminobutyric acid, opioid peptide and substance P (1993) Zhen Ci Yan Jiu, 18, pp. 178-182Liu, X., The role of negative feedback modulating pain of nucleus raphe magnus in electroacupuncture analgesia (1990) Zhen Ci Yan Jiu, 15, pp. 159-166Liu, X., The modulation of cerebral cortex and subcortical nuclei on NRM and their role in acupuncture analgesia (1996) Zhen Ci Yan Jiu, 21, pp. 4-11Liu, X.A., Jiang, M.C., Huang, P.B., Zou, T., Role of afferent C fibers in electroacupuncture of "zusanli" point in activating nucleus raphe magnus (1990) Sheng Li Xue Bao, 42, pp. 523-533Lund, I., Lundeberg, T., Are minimal, superficial or sham acupuncture procedures acceptable as inert placebo controls? (2006) Acupunct Med, 24, pp. 13-15Lund, I., Naslund, J., Lundeberg, T., Minimal acupuncture is not a valid placebo control in randomised controlled trials of acupuncture: A physiologist's perspective (2009) Chin Med, 4, p. 1Mayer, D.J., Price, D.D., Rafii, A., Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone (1977) Brain Res, 121, pp. 368-372Molsberger, A.F., Schneider, T., Gotthardt, H., Drabik, A., German Randomized Acupuncture Trial for Chronic Shoulder Pain (GRASP) - A pragmatic, controlled, patient-blinded, multi-centre trial in an outpatient care environment (2010) Pain, 151, pp. 146-154Oh, S.H., Imbe, H., Iwai-Liao, Y., TMJ inflammation increases Fos expression in the nucleus raphe magnus induced by subsequent formalin injection of the masseter or hindpaw of rats (2006) Okajimas Folia Anat Jpn, 83, pp. 43-52Ohtori, S., Takahashi, K., Chiba, T., Takahashi, Y., Yamagata, M., Sameda, H., Moriya, H., Fos expression in the rat brain and spinal cord evoked by noxious stimulation to low back muscle and skin (2000) Spine (Phila Pa 1976), 25, pp. 2425-2430Okada, K., Oshima, M., Kawakita, K., Examination of the afferent fiber responsible for the suppression of jaw-opening reflex in heat, cold, and manual acupuncture stimulation in rats (1996) Brain Res, 740, pp. 201-207Papir-Kricheli, D., Frey, J., Laufer, R., Gilon, C., Chorev, M., Selinger, Z., Devor, M., Behavioural effects of receptor-specific substance P agonists (1987) Pain, 31, pp. 263-276Paxinos, G., Watson, C., (2007) The Rat Brain in Stereotaxic Coordinates, , 6th ed Academic Press New YorkRaboisson, P., Dallel, R., The orofacial formalin test (2004) Neurosci Biobehav Rev, 28, pp. 219-226Romita, V.V., Yashpal, K., Hui-Chan, C.W., Henry, J.L., Intense peripheral electrical stimulation evokes brief and persistent inhibition of the nociceptive tail withdrawal reflex in the rat (1997) Brain Res, 761, pp. 192-202Sato, T., Takeshige, C., Shimizu, S., Morphine analgesia mediated by activation of the acupuncture-analgesia- producing system (1991) Acupunct Electrother Res, 16, pp. 13-26Schmidt, B.L., Tambeli, C.H., Levine, J.D., Gear, R.W., Mu/delta cooperativity and opposing kappa-opioid effects in nucleus accumbens-mediated antinociception in the rat (2002) Eur J Neurosci, 15, pp. 861-868Shen, E., Ma, W.H., Lan, C., Involvement of descending inhibition in the effect of acupuncture on the splanchnically evoked potential in the orbital cortex of cat (1978) Sci Sin, 21, pp. 677-685Sjolund, B., Terenius, L., Eriksson, M., Increased cerebrospinal fluid levels of endorphins after electro-acupuncture (1977) Acta Physiol Scand, 100, pp. 382-384Szigeti, C., Santha, P., Kortvely, E., Nyari, T., Horvath, V.J., Deak, E., Dux, M., Jancso, G., Disparate changes in the expression of transient receptor potential vanilloid type 1 receptor mRNA and protein in dorsal root ganglion neurons following local capsaicin treatment of the sciatic nerve in the rat (2012) Neuroscience, 201, pp. 320-330Takeshige, C., Sato, T., Mera, T., Hisamitsu, T., Fang, J., Descending pain inhibitory system involved in acupuncture analgesia (1992) Brain Res Bull, 29, pp. 617-634Tambeli, C.H., Levine, J.D., Gear, R.W., Centralization of noxious stimulus-induced analgesia (NSIA) is related to activity at inhibitory synapses in the spinal cord (2009) Pain, 143, pp. 228-232Tambeli, C.H., Parada, C.A., Levine, J.D., Gear, R.W., Inhibition of tonic spinal glutamatergic activity induces antinociception in the rat (2002) Eur J Neurosci, 16, pp. 1547-1553Tambeli, C.H., Quang, P., Levine, J.D., Gear, R.W., Contribution of spinal inhibitory receptors in heterosegmental antinociception induced by noxious stimulation (2003) Eur J Neurosci, 18, pp. 2999-3006Tobbackx, Y., Meeus, M., Wauters, L., De Vilder, P., Roose, J., Verhaeghe, T., Nijs, J., Does acupuncture activate endogenous analgesia in chronic whiplash-associated disorders? A randomized crossover trial (2013) Eur J Pain, 17, pp. 279-289Vas, J., Perea-Milla, E., Mendez, C., Sanchez Navarro, C., Leon Rubio, J.M., Brioso, M., Garcia Obrero, I., Efficacy and safety of acupuncture for chronic uncomplicated neck pain: A randomised controlled study (2006) Pain, 126, pp. 245-255Vas, J., Aranda, J.M., Modesto, M., Benitez-Parejo, N., Herrera, A., Martinez-Barquin, D.M., Aguilar, I., Rivas-Ruiz, F., Acupuncture in patients with acute low back pain: A multicentre randomised controlled clinical trial (2012) Pain, 153, pp. 1883-1889Vase, L., Baram, S., Takakura, N., Yajima, H., Takayama, M., Kaptchuk, T.J., Schou, S., Svensson, P., Specifying the nonspecific components of acupuncture analgesia (2013) Pain, 154, pp. 1659-1667Vickers, A.J., Cronin, A.M., Maschino, A.C., Lewith, G., Macpherson, H., Foster, N.E., Sherman, K.J., Linde, K., Acupuncture for chronic pain: Individual patient data meta-analysis (2012) Arch Intern Med, 172, pp. 1444-1453Wang, H., Li, K.Y., Wu, G.C., Cao, X.D., C-fos expression in spinal cord and brainstem following noxious stimulation and electroacupuncture plus noxious stimulation (1995) Acupunct Electrother Res, 20, pp. 163-172Wang, L.P., Zhang, X.Z., Guo, J., Liu, H.L., Zhang, Y., Liu, C.Z., Yi, J.H., Li, S.S., Efficacy of acupuncture for migraine prophylaxis: A single-blinded, double-dummy, randomized controlled trial (2011) Pain, 152, pp. 1864-1871Wang, S.M., Kain, Z.N., White, P., Acupuncture analgesia, I: The scientific basis (2008) Anesth Analg, 106, pp. 602-610Wang, S.M., Kain, Z.N., White, P.F., Acupuncture analgesia, II: Clinical considerations (2008) Anesth Analg, 106, pp. 611-621Yang, C.P., Wang, N.H., Li, T.C., Hsieh, C.L., Chang, H.H., Hwang, K.L., Ko, W.S., Chang, M.H., A randomized clinical trial of acupuncture versus oral steroids for carpal tunnel syndrome: A long-term follow-up (2011) J Pain, 12, pp. 272-279Zhao, Z.Q., Neural mechanism underlying acupuncture analgesia (2008) Prog Neurobiol, 85, pp. 355-375Zhu, B., Xu, W.D., Rong, P.J., Ben, H., Gao, X.Y., A C-fiber reflex inhibition induced by electroacupuncture with different intensities applied at homotopic and heterotopic acupoints in rats selectively destructive effects on myelinated and unmyelinated afferent fibers (2004) Brain Res, 1011, pp. 228-237Zimmermann, M., Ethical guidelines for investigations of experimental pain in conscious animals (1983) Pain, 16, pp. 109-11

    Effect Of Pain Chronification And Chronic Pain On An Endogenous Pain Modulation Circuit In Rats

    No full text
    We tested the hypothesis that chronic pain development (pain chronification) and ongoing chronic pain (chronic pain) reduce the activity and induce plastic changes in an endogenous analgesia circuit, the ascending nociceptive control. An important mechanism mediating this form of endogenous analgesia, referred to as capsaicin-induced analgesia, is its dependence on nucleus accumbens μ-opioid receptor mechanisms. Therefore, we also investigated whether pain chronification and chronic pain alter the requirement for nucleus accumbens μ-opioid receptor mechanisms in capsaicin-induced analgesia. We used an animal model of pain chronification in which daily subcutaneous prostaglandin E2 (PGE2) injections into the rat's hind paw for 14days, referred to as the induction period of persistent hyperalgesia, induce a long-lasting state of nociceptor sensitization referred to as the maintenance period of persistent hyperalgesia, that lasts for at least 30days following the cessation of the PGE2 treatment. The nociceptor hypersensitivity was measured by the shortening of the time interval for the animal to respond to a mechanical stimulation of the hind paw. We found a significant reduction in the duration of capsaicin-induced analgesia during the induction and maintenance period of persistent mechanical hyperalgesia. Intra-accumbens injection of the μ-opioid receptor selective antagonist Cys2,Tyr3,Orn5,Pen7amide (CTOP) 10min before the subcutaneous injection of capsaicin into the rat's fore paw blocked capsaicin-induced analgesia. Taken together, these findings indicate that pain chronification and chronic pain reduce the duration of capsaicin-induced analgesia, without affecting its dependence on nucleus accumbens μ-opioid receptor mechanisms. The attenuation of endogenous analgesia during pain chronification and chronic pain suggests that endogenous pain circuits play an important role in the development and maintenance of chronic pain.2863744Bushnell, M.C., Ceko, M., Low, L.A., Cognitive and emotional control of pain and its disruption in chronic pain (2013) Nat Rev Neurosci, 14, pp. 502-511Curkovic, B., The pain epidemiology (2007) Reumatizam, 54 (2), pp. 24-27Ferrari, L.F., Gear, R.W., Levine, J.D., Attenuation of activity in an endogenous analgesia circuit by ongoing pain in the rat (2010) J Neurosci, 30 (41), pp. 13699-13706Ferreira, S.H., Lorenzetti, B.B., De Campos, D.I., Induction, blockade and restoration of a persistent hypersensitive state (1990) Pain, 42 (3), pp. 365-371Gear, R.W., Levine, J.D., Rostral ventral medulla cholinergic mechanism in pain-induced analgesia (2009) Neurosci Lett, 464, pp. 170-172Gear, R.W., Levine, J.D., Nucleus accumbens facilitates nociception (2011) Exp Neurol, 229, pp. 502-506Gear, R.W., Aley, K.O., Levine, J.D., Pain-induced analgesia mediated by mesolimbic reward circuits (1999) J Neurosci, 19, pp. 7175-7181Honore, P., Buritova, J., Besson, J.M., Carrageenin-evoked c-Fos expression in rat lumbar spinal cord: the effects of indomethacin (1995) Eur J Pharmacol, 272, pp. 249-259Oliveira, M.C., Pelegrini-da-Silva, A., Parada, C.A., Tambeli, C.H., 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue (2007) Neuroscience, 145 (2), pp. 708-714Paxinos, G., Watson, C., (1986) The rat brain in stereotaxic coordinates, , Academic Press, New YorkPorreca, F., Ossipov, M.H., Gebhart, G.F., Chronic pain and medullary descending facilitation (2002) Trends Neurosci, 25, pp. 319-325Randall, L.O., Selitto, J.J., A method for measurement of analgesic activity on inflamed tissue (1957) Arch Int Pharmacodyn Ther, 111, pp. 409-419Rosland, J.H., The formalin test in mice: the influence of ambient temperature (1991) Pain, 45, pp. 211-216Schmidt, B.L., Tambeli, C.H., Gear, R.W., Levine, J.D., Nicotine withdrawal hyperalgesia and opioid-mediated analgesia depend on nicotine receptors in nucleus accumbens (2001) Neuroscience, 106, pp. 129-136Schmidt, B.L., Tambeli, C.H., Barletta, J., Luo, L., Green, P., Levine, J.D., Gear, R.W., Altered nucleus accumbens circuitry mediates pain-induced antinociception in morphine-tolerant rats (2002) J Neurosci, 22, pp. 6773-6780Schmidt, B.L., Tambeli, C.H., Levine, J.D., Gear, R.W., Mu/delta cooperativity and opposing kappa-opioid effects in nucleus accumbens-mediated antinociception in the rat (2002) Eur J Neurosci, 15, pp. 861-868Schmidt, B.L., Tambeli, C.H., Levine, J.D., Gear, R.W., Adaptations in nucleus accumbens circuitry during opioid withdrawal associated with persistence of noxious stimulus-induced antinociception in the rat (2003) J Pain, 4, pp. 141-147Taiwo, Y.O., Coderre, T.J., Levine, J.D., The contribution of training to sensitivity in the nociceptive paw-withdrawal test (1989) Brain Res, 487 (1), pp. 148-151Tambeli, C.H., Parada, C.A., Levine, J.D., Gear, R.W., Inhibition of tonic spinal glutamatergic activity induces antinociception in the rat (2002) Eur J Neurosci, 16, pp. 1547-1553Tambeli, C.H., Quang, P., Levine, J.D., Gear, R.W., Contribution of spinal inhibitory receptors in heterosegmental antinociception induced by noxious stimulation (2003) Eur J Neurosci, 18, pp. 2999-3006Tambeli, C.H., Young, A., Levine, J.D., Gear, R.W., Contribution of spinal glutamatergic mechanisms in heterosegmental antinociception induced by noxious stimulation (2003) Pain, 106, pp. 173-179Tambeli, C.H., Levine, J.D., Gear, R.W., Centralization of noxious stimulus-induced analgesia (NSIA) is related to activity at inhibitory synapses in the spinal cord (2009) Pain, 143, pp. 228-232Tobaldini, G., de Siqueira, B.A., Lima, M.M., Tambeli, C.H., Fischer, L., Ascending nociceptive control contributes to the anti-nociceptive effect of acupuncture in a rat model of acute pain (2014) J Pain, 15 (4), pp. 422-434Tsuda, M., Suzuki, T., Misawa, M., Nagase, H., Involvement of the opioid system in the anxiolytic effect of diazepam in mice (1996) Eur J Pharmacol, 307, pp. 7-14Vanegas, H., Schaible, H.G., Descending control of persistent pain: inhibitory or facilitatory? (2004) Brain Res Brain Res Rev, 46, pp. 295-309Villanueva, L., Le Bars, D., The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls (1995) Biol Res, 28, pp. 113-125Villarreal, C.F., Sachs, D., Funez, M.I., Parada, C.A., Cunha, F.Q., Ferreira, S.H., The peripheral pro-nociceptive state induced by repetitive inflammatory stimuli involves continuous activation of protein kinase A and protein kinase C epsilon and its Na(V)1.8 sodium channel functional regulation in the primary sensory neuron (2009) Biochem Pharmacol, 77 (5), pp. 867-877Villarreal, C.F., Funez, M.I., Figueiredo, F., Cunha, F.Q., Parada, C.A., Ferreira, S.H., Acute and persistent nociceptive paw sensitisation in mice: the involvement of distinct signalling pathways (2009) Life Sci, 85 (23-26), pp. 822-829Wang, S.M., Kain, Z.N., White, P.F., Acupuncture analgesia: II. Clinical considerations (2008) Anesth Analg, 106 (2), pp. 611-621Woolf, C.J., Evidence for a central component of post-injury pain hypersensitivity (1983) Nature, 306 (5944), pp. 686-688Woolf, C.J., Central sensitization: implications for the diagnosis and treatment of pain (2011) Nature, 152 (3), pp. S2-S31Yarnitsky, D., Crispel, Y., Eisenberg, E., Granovsky, Y., Ben-Nun, A., Sprecher, E., Best, L.A., Granot, M., Prediction of chronic post-operative pain: pre-operative DNIC testing identifies patients at risk (2008) Pain, 138, pp. 22-2

    The Contribution Of Transient Receptor Potential Ankyrin 1 (trpa1) To The In Vivo Nociceptive Effects Of Prostaglandin E2

    No full text
    Aims Although evidence suggest that TRPA1 mediates some effects of prostaglandins, it is not known whether TRPA1 contributes to the in vivo nociceptive effects of prostaglandin E2 (PGE2), a key mediator of inflammatory pain. Main methods To address this issue, the effect of the pharmacological blockade of TRPA1 or of its gene silencing on the hyperalgesia induced in the rat paw by PGE2 or its downstream signaling molecules, protein kinase A (PKA) or protein kinase C-epsilon (PKCε), was evaluated. TRPA1 expression on dorsal root ganglia cells was assessed by western blot. Key findings The pharmacological blockade of local TRPA1 by its selective antagonist, HC 030031 decreased and reversed PGE2-induced hyperalgesia. The TRPA1 gene silencing induced by intrathecal pre-treatment with antisense oligodeoxynucleotide blocked PGE 2-induced hyperalgesia and strongly reduced TRPA1 expression in dorsal root ganglia cells (L5 and L6). PGE2 injection into the hind paw did not significantly increase TRPA1 expression in dorsal root ganglia cells. Treatment with either HC 030031 or antisense oligodeoxynucleotide significantly decreased the hyperalgesia induced by PKA or PKCε. Since both kinases are the major components of PGE2-induced intracellular signal transduction, the modulation of TRPA1 function by PGE 2 may be downstream PKA and PKC-epsilon. Significance These findings show that TRPA1 is essential to the in vivo nociceptive effects induced by one of the most important mediators of inflammatory pain, PGE2. This is one of the crucial findings necessary to support TRPA1 as a promising target for the development of future drugs to pain treatment and control. © 2014 Published by Elsevier Inc.10501/02/15713Ferreira, S.H., Nakamura, M., I - Prostaglandin hyperalgesia, a cAMP/Ca2 + dependent process (1979) Prostaglandins, 18 (2), pp. 179-190Parada, C.A., Reichling, D.B., Levine, J.D., Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCepsilon second messenger pathways (2005) Pain, 113 (12), pp. 185-190Ferreira, S.H., Moncada, S., Vane, J.R., Prostaglandins and the mechanism of analgesia produced by aspirin-like drugs (1973) Br J Pharmacol, 49 (1), pp. 86-97Bandell, M., Story, G.M., Hwang, S.W., Viswanath, V., Eid, S.R., Petrus, M.J., Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin (2004) Neuron, 41 (6), pp. 849-857Bonet, I.J., Fischer, L., Parada, C.A., Tambeli, C.H., The role of transient receptor potential A 1 (TRPA1) in the development and maintenance of Carrageenan-induced hyperalgesia (2013) Neuropharmacology, 65 C, pp. 206-212Wang, S., Dai, Y., Fukuoka, T., Yamanaka, H., Kobayashi, K., Obata, K., Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: A molecular mechanism of inflammatory pain (2008) Brain, 131 (PART 5), pp. 1241-1251Bautista, D.M., Jordt, S.E., Nikai, T., Tsuruda, P.R., Read, A.J., Poblete, J., TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents (2006) Cell, 124 (6), pp. 1269-1282Da Costa, D.S., Meotti, F.C., Andrade, E.L., Leal, P.C., Motta, E.M., Calixto, J.B., The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation (2010) Pain, 148 (3), pp. 431-437Dunham, J.P., Kelly, S., Donaldson, L.F., Inflammation reduces mechanical thresholds in a population of transient receptor potential channel A1-expressing nociceptors in the rat (2008) Eur J Neurosci, 27 (12), pp. 3151-3160Eid, S.R., Crown, E.D., Moore, E.L., Liang, H.A., Choong, K.C., Dima, S., HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity (2008) Mol Pain, 4, p. 48Obata, K., Katsura, H., Mizushima, T., Yamanaka, H., Kobayashi, K., Dai, Y., TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury (2005) J Clin Invest, 115 (9), pp. 2393-2401Petrus, M., Peier, A.M., Bandell, M., Hwang, S.W., Huynh, T., Olney, N., A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition (2007) Mol Pain, 3, p. 40Dai, Y., Wang, S., Tominaga, M., Yamamoto, S., Fukuoka, T., Higashi, T., Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain (2007) J Clin Invest, 117 (7), pp. 1979-1987Cao, D.S., Zhong, L., Hsieh, T.H., Abooj, M., Bishnoi, M., Hughes, L., Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells (2012) PLoS One, 7 (5), p. 38005Cruz-Orengo, L., Dhaka, A., Heuermann, R.J., Young, T.J., Montana, M.C., Cavanaugh, E.J., Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1 (2008) Mol Pain, 4, p. 30Grace, M., Birrell, M.A., Dubuis, E., Maher, S.A., Belvisi, M.G., Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin (2012) Thorax, 67 (10), pp. 891-900Materazzi, S., Nassini, R., Andre, E., Campi, B., Amadesi, S., Trevisani, M., Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1 (2008) Proc Natl Acad Sci U S A, 105 (33), pp. 12045-12050Taylor-Clark, T.E., Undem, B.J., Macglashan, Jr.D.W., Ghatta, S., Carr, M.J., McAlexander, M.A., Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1) (2008) Mol Pharmacol, 73 (2), pp. 274-281Zimmermann, M., Ethical guidelines for investigations of experimental pain in conscious animals (1983) Pain, 16 (2), pp. 109-110Sachs, D., Villarreal, C., Cunha, F., Parada, C., Ferreira, S., The role of PKA and PKCepsilon pathways in prostaglandin E 2-mediated hypernociception (2009) Br J Pharmacol, 156 (5), pp. 826-834Perin-Martins, A., Teixeira, J.M., Tambeli, C.H., Parada, C.A., Fischer, L., Mechanisms underlying transient receptor potential ankyrin 1 (TRPA1)-mediated hyperalgesia and edema (2013) J Peripher Nerv Syst, 18 (1), pp. 62-74Tobaldini, G., De Siqueira, B.A., Lima, M.M., Tambeli, C.H., Fischer, L., Ascending nociceptive control contributes to the anti-nociceptive effect of acupuncture in a rat model of acute pain (2014) J Pain, 15 (4), pp. 422-434Ro, J.Y., Lee, J.S., Zhang, Y., Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia (2010) Pain, 144 (3), pp. 270-277Papir-Kricheli, D., Frey, J., Laufer, R., Gilon, C., Chorev, M., Selinger, Z., Behavioural effects of receptor-specific substance P agonists (1987) Pain, 31 (2), pp. 263-276Romero-Calvo, I., Ocon, B., Martinez-Moya, P., Suarez, M.D., Zarzuelo, A., Martinez-Augustin, O., Reversible Ponceau staining as a loading control alternative to actin in western blots (2010) Anal Biochem, 401 (2), pp. 318-320Kawabata, A., Prostaglandin E2 and pain - An update (2011) Biol Pharm Bull, 34 (8), pp. 1170-1173Frederick, J., Buck, M.E., Matson, D.J., Cortright, D.N., Increased TRPA1, TRPM8, and TRPV2 expression in dorsal root ganglia by nerve injury (2007) Biochem Biophys Res Commun, 358 (4), pp. 1058-1064Stamatakis, K., Perez-Sala, D., Prostanoids with cyclopentenone structure as tools for the characterization of electrophilic lipid-protein interactomes (2006) Ann N y Acad Sci, 1091, pp. 548-570Oliveira, M.C., Pelegrini-Da-Silva, A., Parada, C.A., Tambeli, C.H., 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue (2007) Neuroscience, 145 (2), pp. 708-71

    Leukocyte-rich PRP versus leukocyte-poor PRP - The role of monocyte/macrophage function in the healing cascade

    No full text
    The mechanism of action of Platelet Rich Plasma (PRP) is thought to be related to the biomolecules present in α-granules. However, for the healing process to occur, an inflammatory phase is also deemed necessary. Leukocytes present in the inflammatory phase release both pro- and anti-inflammatory molecules. The latter may play an important role in the process of “inflammatory regeneration”. Thus, we propose that in the context of healing, both platelets and leukocytes play an important role, specifically due to the macrophage's plasticity to switch from the M1 to M2 fraction. Therefore, we propose that PRP products derived from the buffy coat may be more beneficial than detrimental from a standpoint of the regenerative potential of PRP101S7S12sem informaçãosem informaçã

    5-ht Induces Temporomandibular Joint Nociception In Rats Through The Local Release Of Inflammatory Mediators And Activation Of Local β Adrenoceptors

    No full text
    The 5-hydroxytryptamine (serotonin, 5-HT) is an important inflammatory mediator found in high levels in the synovial fluid of the temporomandibular joint (TMJ) of patients with inflammatory pain. In this study, we used the nociceptive behavior responses, measured as flinching the head and rubbing the orofacial region, as a nociceptive assay. We demonstrated that the local blockade of the 5-HT3 receptor and β1 or β2-adrenoceptors, the depletion of norepinephrine in the sympathetic terminals and the local inhibition of cyclooxygenase significantly reduced 5-HT-induced TMJ nociception. These results demonstrated that 5-HT induces nociception in the TMJ region by the activation of β1 and β2 adrenoceptors located in the TMJ region and local release of sympathetic amines and prostaglandins. Therefore, the high levels of 5-HT in the synovial fluid of patients with TMJ inflammatory pain may contribute to TMJ pain by similar mechanisms. © 2012 Elsevier Inc.1023458464Aley, K.O., Levine, J.D., Role of protein kinase A in the maintenance of inflammatory pain (1999) Journal of Neuroscience, 19 (6), pp. 2181-2186Alstergren, P., Kopp, S., Pain and synovial fluid concentration of serotonin in arthritic temporomandibular joints (1997) Pain, 72 (1-2), pp. 137-143. , DOI 10.1016/S0304-3959(97)00022-5, PII S0304395997000225Baker, J.G., The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors (2005) British Journal of Pharmacology, 144 (3), pp. 317-322. , DOI 10.1038/sj.bjp.0706048Bakke, M., Hu, J.W., Sessle, B.J., Involvement of NK-1 and NK-2 tachykinin receptor mechanisms in jaw muscle activity reflexly evoked by inflammatory irritant application to the rat temporomandibular joint (1998) Pain, 75 (2-3), pp. 219-227. , DOI 10.1016/S0304-3959(97)00223-6, PII S0304395997002236Barnes, P.J., β-Adrenoceptors on smooth muscle, nerves and inflammatory cells (1993) Life Sciences, 52 (26), pp. 2101-2109. , DOI 10.1016/0024-3205(93)90725-IBicego, K.C., Steiner, A.A., Antunes-Rodrigues, J., Branco, L.G.S., Indomethacin impairs LPS-induced behavioral fever in toads (2002) Journal of Applied Physiology, 93 (2), pp. 512-516Bradley, P.P., Priebat, D.A., Christensen, R.D., Rothstein, G., Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker (1982) Journal of Investigative Dermatology, 78 (3), pp. 206-209Chen, Y., Palm, F., Lesch, K.P., Gerlach, M., Moessner, R., Sommer, C., 5-Hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, is responsible for complete Freund's adjuvant-induced thermal hyperalgesia in mice (2011) Mol Pain, 7, p. 2Christidis, N., Nilsson, A., Kopp, S., Ernberg, M., Intramuscular injection of granisetron into the masseter muscle increases the pressure pain threshold in healthy participants and patients with localized myalgia (2007) Clinical Journal of Pain, 23 (6), pp. 467-472. , DOI 10.1097/AJP.0b013e318058abb1, PII 0000250820070700000001Christidis, N., Ioannidou, K., Milosevic, M., Segerdahl, M., Ernberg, M., Changes of hypertonic saline-induced masseter muscle pain characterisitcs, by an infusion of the serotonin receptor type 3 antagonist granisetron (2008) J Pain, 10, pp. 892-901Claria, J., Romano, M., Pharmacological intervention of cyclooxygenase-2 and 5-lipoxygenase pathways. Impact on inflammation and cancer (2005) Current Pharmaceutical Design, 11 (26), pp. 3431-3447. , DOI 10.2174/138161205774370753Cunha, T.M., Verri Jr., W.A., Schivo, I.R., Napimoga, M.H., Parada, C.A., Poole, S., Teixeira, M.M., Cunha, F.Q., Crucial role of neutrophils in the development of mechanical inflammatory hypernociception (2008) Journal of Leukocyte Biology, 83 (4), pp. 824-832. , http://www.jleukbio.org/cgi/reprint/83/4/824, DOI 10.1189/jlb.0907654Dworkin, S.F., Leresche, L., Research diagnostic criteria for temporomandibular disorders: Review, criteria, examinations and specifications, critique (1992) J Craniomandib Disord, 6, pp. 301-355Ernberg, M., Hedenberg-Magnusson, B., Alstergren, P., Lundeberg, T., Kopp, S., Pain, allodynia, and serum serotonin level in orofacial pain of muscular origin (1999) J Orofac Pain, 13, pp. 56-62Ernberg, M., Hedenberg-Magnusson, B., Kurita, H., Kopp, S., Effects of local serotonin administration on pain and microcirculation in the human masseter muscle (2006) Journal of Orofacial Pain, 20 (3), pp. 241-248Fasano, M.B., Wells, J.D., McCall, C.E., Human neutrophils express the prostaglandin G/H synthase 2 gene when stimulated with bacterial lipopolysaccharide (1998) Clinical Immunology and Immunopathology, 87 (3), pp. 304-308. , DOI 10.1006/clin.1998.4545Fávaro-Moreira, N.C., Parada, C.A., Tambeli, C.H., Blockade of β(1)-, β(2)- and β(3)-adrenoceptors in the temporomandibular joint induces antinociception especially in female rats (2012) Eur J Pain, , 10.1002/j.1532-2149.2012.00132.xFerreira, S.H., Nakamura, M., De Abreu Castro, M.S., The hyperalgesic effects of prostacyclin and prostaglandin E2 (1978) Prostaglandins, 16, pp. 31-37Fischer, L., Tambeli, C.H., Parada, C.A., TRPA1-mediated nociception (2008) Neuroscience, 155, pp. 337-338Green, P.G., Luo, J., Heller, P.H., Levine, J.D., Further substantiation of a significant role for the sympathetic nervous system in inflammation (1993) Neuroscience, 55 (4), pp. 1037-1043. , DOI 10.1016/0306-4522(93)90317-9Hong, Y., Abbott, F.V., Behavioural effects of intraplantar injection of inflammatory mediators in the rat (1994) Neuroscience, 63 (3), pp. 827-836. , DOI 10.1016/0306-4522(94)90527-4Hu, W.P., Guan, B.C., Ru, L.Q., Chen, J.G., Li, Z.W., Potentiation of 5-HT3 receptor function by the activation of coexistent 5-HT2 receptors in trigeminal ganglion neurons of rats (2004) Neuropharmacology, 47, pp. 833-840Hu, W.-P., Li, X.-M., Wu, J.-L., Zheng, M., Li, Z.-W., Bradykinin potentiates 5-HT3 receptor-mediated current in rat trigeminal ganglion neurons (2005) Acta Pharmacologica Sinica, 26 (4), pp. 428-434. , DOI 10.1111/j.1745-7254.2005.00074.xInoue, M., Rashid, Md.H., Kawashima, T., Matsumoto, M., Maeda, T., Kishioka, S., Ueda, H., The algogenic-induced nociceptive flexion test in mice: Studies on sensitivity of the test and stress on animals (2003) Brain Research Bulletin, 60 (3), pp. 275-281. , DOI 10.1016/S0361-9230(03)00045-5Khasar, S.G., Mccarter, G., Levine, J.D., Epinephrine produces a β-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors (1999) Journal of Neurophysiology, 81 (3), pp. 1104-1112Kido, M.A., Zhang, J.-Q., Muroya, H., Yamaza, T., Terada, Y., Tanaka, T., Topography and distribution of sympathetic nerve fibers in the rat temporomandibular joint: Immunocytochemistry and ultrastructure (2001) Anatomy and Embryology, 203 (5), pp. 357-366. , DOI 10.1007/s004290100163Kim, H.Y., Kim, K., Li, H.Y., Chung, G., Park, C.K., Kim, J.S., Selectively targeting pain in the trigeminal system (2010) Pain, 150, pp. 29-40Levine, J.D., Dardick, S.J., Roizen, M.F., Contribution of sensory afferents and sympathetic efferents to joint injury in experimental arthritis (1986) Journal of Neuroscience, 6 (12), pp. 3423-3429Morales, M., Wang, S.-D., Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat CNS and peripheral nervous system (2002) Journal of Neuroscience, 22 (15), pp. 6732-6741Nakamura, M., Ferreira, S.H., A peripheral sympathetic component in inflammatory hyperalgesia (1987) European Journal of Pharmacology, 135 (2), pp. 145-153. , DOI 10.1016/0014-2999(87)90606-6Nebigil, C., Malik, K.U., Prostaglandin synthesis elicited by adrenergic stimuli in rabbit aorta is mediated via alpha-1 and alpha-2 adrenergic receptors (1990) Journal of Pharmacology and Experimental Therapeutics, 254 (2), pp. 633-640Nicholson, R., Dixon, A.K., Spanswick, D., Lee, K., Noradrenergic receptor mRNA expression in adult rat superficial dorsal horn and dorsal root ganglion neurons (2005) Neuroscience Letters, 380 (3), pp. 316-321. , DOI 10.1016/j.neulet.2005.01.079Nuttall, S.L., Routledge, H.C., Kendall, M.J., A comparison of the β1-selectivity of three β1-selective β-blockers (2003) Journal of Clinical Pharmacy and Therapeutics, 28 (3), pp. 179-186. , DOI 10.1046/j.1365-2710.2003.00477.xOjeda, S.R., Negro-Vilar, A., McCann, S.M., Evidence for involvement of α-adrenergic receptors in norepinephrine-induced prostaglandin E2 and luteinizing hormone-releasing hormone release from the median eminence (1982) Endocrinology, 110 (2), pp. 409-412Okamoto, K., Imbe, H., Tashiro, A., Kumabe, S., Senba, E., Blockade of peripheral 5HT3 receptor attenuates the formalin-induced nocifensive behavior in persistent temporomandibular joint inflammation of rat (2004) Neuroscience Letters, 367 (2), pp. 259-263. , DOI 10.1016/j.neulet.2004.06.017, PII S0304394004007529Oliveira, M.C.G., Parada, C.A., Veiga, M.C.F.A., Rodrigues, L.R., Barros, S.P., Tambeli, C.H., Evidence for the involvement of endogenous ATP and P2X receptors in TMJ pain (2005) European Journal of Pain, 9 (1), pp. 87-93. , DOI 10.1016/j.ejpain.2004.04.006, PII S1090380104000527Oliveira, M.C.G., Pelegrini-Da-Silva, A., Parada, C.A., Tambeli, C.H., 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue (2007) Neuroscience, 145 (2), pp. 708-714. , DOI 10.1016/j.neuroscience.2006.12.021, PII S0306452206016757Oliveira, M.C., Pelegrini-Da-Silva, A., Tambeli, C.H., Parada, C.A., Peripheral mechanisms underlying the essential role of P2X3,2/3 receptors in the development of inflammatory hyperalgesia (2009) Pain, 141, pp. 127-134Parada, C.A., Tambeli, C.H., Cunha, F.Q., Ferreira, S.H., The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception (2001) Neuroscience, 102 (4), pp. 937-944. , DOI 10.1016/S0306-4522(00)00523-6, PII S0306452200005236Parada, C.A., Yeh, J.J., Joseph, E.K., Levine, J.D., Tumor necrosis factor receptor type-1 in sensory neurons contributes to induction of chronic enhancement of inflammatory hyperalgesia in rat (2003) European Journal of Neuroscience, 17 (9), pp. 1847-1852. , DOI 10.1046/j.1460-9568.2003.02626.xPelegrini-Da-Silva, A., Oliveira, M.C., Parada, C.A., Tambeli, C.H., Nerve growth factor acts with the beta2-adrenoceptor to induce spontaneous nociceptive behavior during temporomandibular joint inflammatory hyperalgesia (2008) Life Sci, 83, pp. 780-785Pierce, P.A., Xie, G.X., Levine, J.D., Peroutka, S.J., 5-Hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: A polymerase chain reaction study (1996) Neuroscience, 70, pp. 553-559Ritta, M.N., Cardinali, D.P., Involvement of α-adrenoceptors in norepinephrine-induced prostaglandin E2 release by rat pineal gland in vitro (1982) Neuroscience Letters, 31 (3), pp. 307-311. , DOI 10.1016/0304-3940(82)90038-6Rodrigues, L.L.F.R., Oliveira, M.C.G., Pelegrini-Da-Silva, A., De Arruda Veiga, M.C.F., Parada, C.A., Tambeli, C.H., Peripheral Sympathetic Component of the Temporomandibular Joint Inflammatory Pain in Rats (2006) Journal of Pain, 7 (12), pp. 929-936. , DOI 10.1016/j.jpain.2006.05.006, PII S1526590006007905Rosenberg, M., Pie, B., Cooper, E., Developing neonatal rat sympathetic and sensory neurons differ in their regulation of 5-HT3 receptor expression (1997) Journal of Neuroscience, 17 (17), pp. 6629-6638Rosland, J.H., The formalin test in mice: The influence of ambient temperature (1991) Pain, 45, pp. 211-216Roveroni, R.C., Parada, C.A., Cecilia, M., Veiga, F.A., Tambeli, C.H., Development of a behavioral model of TMJ pain in rats: The TMJ formalin test (2001) Pain, 94 (2), pp. 185-191. , DOI 10.1016/S0304-3959(01)00357-8, PII S0304395901003578Sasaki, M., Obata, H., Kawahara, K., Saito, S., Goto, F., Peripheral 5-HT2A receptor antagonism attenuates primary thermal hyperalgesia and secondary mechanical allodynia after thermal injury in rats (2006) Pain, 122, pp. 130-136Secco, D.D., Paron, J.A., De Oliveira, S.H.P., Ferreira, S.H., Silva, J.S., Cunha, F.D.Q., Neutrophil migration in inflammation: Nitric oxide inhibits rolling, adhesion and induces apoptosis (2003) Nitric Oxide - Biology and Chemistry, 9 (3), pp. 153-164. , DOI 10.1016/j.niox.2003.11.001Seide, M.F., Ulrich-Merzenich, G., Fiebich, B., Candelario-Jalil, E., Koch, F.W., Vetter, H., Tropisetron inhibits serotonin-induced PGE2 release from macrophage-like synovial cells in serum-free tissue culture (2004) Scand J Rheumatol Suppl, 33Smith, J.A., Davis, C.L., Burgess, G.M., Prostaglandin E2-induced sensitization of bradykinin-evoked responses in rat dorsal root ganglion neurons is mediated by cAMP-dependent protein kinase A (2000) Eur J Neurosci, 12, pp. 3250-3258Sun, J., Sung, J.K., Min, K.P., Hye, J.K., Tsoy, I., Young, J.K., Young, S.L., Chang, K.C., Selective activation of adrenergic β1 receptors induces heme oxygenase 1 production in RAW264.7 cells (2005) FEBS Letters, 579 (25), pp. 5494-5500. , DOI 10.1016/j.febslet.2005.08.080, PII S0014579305011063Sung, D., Dong, X., Ernberg, M., Kumar, U., Cairns, B.E., Serotonin (5-HT) excites rat masticatory muscle afferent fibers through activation of peripheral 5-HT3 receptors (2008) Pain, 134 (1-2), pp. 41-50. , DOI 10.1016/j.pain.2007.03.034, PII S0304395907001625Taiwo, Y.O., Levine, J.D., Serotonin is a directly-acting hyperalgesic agent in the rat (1992) Neuroscience, 48, pp. 485-490Tambeli, C.H., Seo, K., Sessle, B.J., Hu, J.W., Central μ opioid receptor mechanisms modulate mustard oil-evoked jaw muscle activity (2001) Brain Research, 913 (1), pp. 90-94. , DOI 10.1016/S0006-8993(01)02742-1, PII S0006899301027421Tambeli, C.H., Oliveira, M.C.G., Clemente, J.T., Pelegrini-Da-Silva, A., Parada, C.A., A novel mechanism involved in 5-hydroxytryptamine-induced nociception: The indirect activation of primary afferents (2006) Neuroscience, 141 (3), pp. 1517-1524. , DOI 10.1016/j.neuroscience.2006.04.030, PII S0306452206005355Vivancos, G.G., Parada, C.A., Ferreira, S.H., Opposite nociceptive effects of the arginine/NO/cGMP pathway stimulation in dermal and subcutaneous tissues (2003) British Journal of Pharmacology, 138 (7), pp. 1351-1357. , DOI 10.1038/sj.bjp.0705181Voog, U., Alstergren, P., Leibur, E., Kallikorm, R., Kopp, S., Influence of serotonin on the analgesic effect of granisetron on temporomandibular joint arthritis (2004) Mediators of Inflammation, 13 (5-6), pp. 373-376. , DOI 10.1080/09629350400014123Waldron, J.B., Sawynok, J., Peripheral P2X receptors and nociception: Interactions with biogenic amine systems (2004) Pain, 110 (1-2), pp. 79-89. , DOI 10.1016/j.pain.2004.03.012, PII S030439590400137XWeissmann, G., The biochemistry of inflammation: Rheumatoid arthritis and anti-inflammatory drugs (1982) J Miss State Med Assoc, 23, pp. 66-73Widenfalk, B., Wiberg, M., Origin of sympathetic and sensory innervation of the temporo-mandibular joint. A retrograde axonal tracing study in the rat (1990) Neuroscience Letters, 109 (1-2), pp. 30-35. , DOI 10.1016/0304-3940(90)90533-FYang, J., Mathie, A., Hille, B., 5-HT3 receptor channels in dissociated rat superior cervical ganglion neurons (1992) J Physiol, 448, pp. 237-256Yoshino, K., Kawagishi, S., Amano, N., Morphological characteristics of primary sensory and postsynaptic sympathetic neurones supplying the temporomandibular joint in the cat (1998) Archives of Oral Biology, 43 (9), pp. 679-686. , DOI 10.1016/S0003-9969(98)00058-2, PII S0003996998000582Sardar, Y.K., Yousufzai, Y.K., Abdel-Latif, A.A., The effects of alphasub 1-adrenergic and muscarinic cholinergic stimulation on prostaglandin release by rabbit iris (1984) Prostaglandins, 28 (3), pp. 399-415. , DOI 10.1016/0090-6980(84)90025-XYu, X.-M., Sessle, B.J., Haas, D.A., Izzo, A., Vernon, H., Hu, J.W., Involvement of NMDA receptor mechanisms in jaw electromyographic activity and plasma extravasation induced by inflammatory irritant application to temporomandibular joint region of rats (1996) Pain, 68 (1), pp. 169-178. , DOI 10.1016/S0304-3959(96)03181-8, PII S0304395996031818Zeitz, K.P., Guy, N., Malmberg, A.B., Dirajlal, S., Martin, W.J., Sun, L., Bonhaus, D.W., Basbaum, A.I., The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors (2002) Journal of Neuroscience, 22 (3), pp. 1010-101

    The Role of Dopamine in Primary Headaches

    No full text
    corecore