6,464 research outputs found

    On the energetic origin of self-limiting trenches formed around Ge/Si quantum dots

    Full text link
    At high growth temperatures, the misfit strain at the boundary of Ge quantum dots on Si(001) is relieved by formation of trenches around the base of the islands. The depth of the trenches has been observed to saturate at a level that depends on the base-width of the islands. Using finite element simulations, we show that the self-limiting nature of trench depth is due to a competition between the elastic relaxation energy gained by the formation of the trench and the surface energy cost for creating the trench. Our simulations predict a linear increase of the trench depth with the island radius, in quantitative agreement with the experimental observations of Drucker and coworkers

    Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization

    Full text link
    Creating impact in real-world settings requires artificial intelligence techniques to span the full pipeline from data, to predictive models, to decisions. These components are typically approached separately: a machine learning model is first trained via a measure of predictive accuracy, and then its predictions are used as input into an optimization algorithm which produces a decision. However, the loss function used to train the model may easily be misaligned with the end goal, which is to make the best decisions possible. Hand-tuning the loss function to align with optimization is a difficult and error-prone process (which is often skipped entirely). We focus on combinatorial optimization problems and introduce a general framework for decision-focused learning, where the machine learning model is directly trained in conjunction with the optimization algorithm to produce high-quality decisions. Technically, our contribution is a means of integrating common classes of discrete optimization problems into deep learning or other predictive models, which are typically trained via gradient descent. The main idea is to use a continuous relaxation of the discrete problem to propagate gradients through the optimization procedure. We instantiate this framework for two broad classes of combinatorial problems: linear programs and submodular maximization. Experimental results across a variety of domains show that decision-focused learning often leads to improved optimization performance compared to traditional methods. We find that standard measures of accuracy are not a reliable proxy for a predictive model's utility in optimization, and our method's ability to specify the true goal as the model's training objective yields substantial dividends across a range of decision problems.Comment: Full version of paper accepted at AAAI 201

    Electoral participation in African democracies: the impact of individual and contextual factors

    Get PDF
    This paper addresses the question of how electoral participation at the individual level is affected by various political and sociological factors in new democracies in Sub-Saharan Africa. Relying on Afrobarometer (Round 5) data, the study examines the determinants of voting for over 12,000 voting aged individuals in eight countries. Findings confirm the importance of individual characteristics such as age, associational networks, discussing politics, party identification, religiosity, trust and satisfaction with democracy in predicting turnout at the individual level. But more importantly, the addition of contextual factors significantly improves the individual-level model predicting vote choice in these democracies

    [Review] Aina Gallego (2014) Unequal Political Participation Worldwide

    Get PDF
    No description supplie

    Security Games with Information Leakage: Modeling and Computation

    Full text link
    Most models of Stackelberg security games assume that the attacker only knows the defender's mixed strategy, but is not able to observe (even partially) the instantiated pure strategy. Such partial observation of the deployed pure strategy -- an issue we refer to as information leakage -- is a significant concern in practical applications. While previous research on patrolling games has considered the attacker's real-time surveillance, our settings, therefore models and techniques, are fundamentally different. More specifically, after describing the information leakage model, we start with an LP formulation to compute the defender's optimal strategy in the presence of leakage. Perhaps surprisingly, we show that a key subproblem to solve this LP (more precisely, the defender oracle) is NP-hard even for the simplest of security game models. We then approach the problem from three possible directions: efficient algorithms for restricted cases, approximation algorithms, and heuristic algorithms for sampling that improves upon the status quo. Our experiments confirm the necessity of handling information leakage and the advantage of our algorithms

    On the Inducibility of Stackelberg Equilibrium for Security Games

    Full text link
    Strong Stackelberg equilibrium (SSE) is the standard solution concept of Stackelberg security games. As opposed to the weak Stackelberg equilibrium (WSE), the SSE assumes that the follower breaks ties in favor of the leader and this is widely acknowledged and justified by the assertion that the defender can often induce the attacker to choose a preferred action by making an infinitesimal adjustment to her strategy. Unfortunately, in security games with resource assignment constraints, the assertion might not be valid; it is possible that the defender cannot induce the desired outcome. As a result, many results claimed in the literature may be overly optimistic. To remedy, we first formally define the utility guarantee of a defender strategy and provide examples to show that the utility of SSE can be higher than its utility guarantee. Second, inspired by the analysis of leader's payoff by Von Stengel and Zamir (2004), we provide the solution concept called the inducible Stackelberg equilibrium (ISE), which owns the highest utility guarantee and always exists. Third, we show the conditions when ISE coincides with SSE and the fact that in general case, SSE can be extremely worse with respect to utility guarantee. Moreover, introducing the ISE does not invalidate existing algorithmic results as the problem of computing an ISE polynomially reduces to that of computing an SSE. We also provide an algorithmic implementation for computing ISE, with which our experiments unveil the empirical advantage of the ISE over the SSE.Comment: The Thirty-Third AAAI Conference on Artificial Intelligenc

    Decentralized dynamic task allocation for UAVs with limited communication range

    Full text link
    We present the Limited-range Online Routing Problem (LORP), which involves a team of Unmanned Aerial Vehicles (UAVs) with limited communication range that must autonomously coordinate to service task requests. We first show a general approach to cast this dynamic problem as a sequence of decentralized task allocation problems. Then we present two solutions both based on modeling the allocation task as a Markov Random Field to subsequently assess decisions by means of the decentralized Max-Sum algorithm. Our first solution assumes independence between requests, whereas our second solution also considers the UAVs' workloads. A thorough empirical evaluation shows that our workload-based solution consistently outperforms current state-of-the-art methods in a wide range of scenarios, lowering the average service time up to 16%. In the best-case scenario there is no gap between our decentralized solution and centralized techniques. In the worst-case scenario we manage to reduce by 25% the gap between current decentralized and centralized techniques. Thus, our solution becomes the method of choice for our problem
    corecore