36 research outputs found

    A Large Expansion of the HSFY Gene Family in Cattle Shows Dispersion across Yq and Testis-Specific Expression

    Get PDF
    Heat shock transcription factor, Y-linked (HSFY) is a member of the heat shock transcriptional factor (HSF) family that is found in multiple copies on the Y chromosome and conserved in a number of species. Its function still remains unknown but in humans it is thought to play a role in spermatogenesis. Through real time polymerase chain reaction (PCR) analyses we determined that the HSFY family is largely expanded in cattle (∼70 copies) compared with human (2 functional copies, 4 HSFY-similar copies). Unexpectedly, we found that it does not vary among individual bulls as a copy number variant (CNV). Using fluorescence in situ hybridization (FISH) we found that the copies are dispersed along the long arm of the Y chromosome (Yq). HSFY expression in cattle appears restricted to the testis and its mRNA correlates positively with mRNA markers of spermatogonial and spermatocyte cells (UCHL1 and TRPC2, respectively) which suggests that HSFY is expressed (at least in part) in early germ cells

    The Porcine TSPY Gene Is Tricopy but Not a Copy Number Variant

    No full text
    <div><p>The testis-specific protein Y-encoded (TSPY) gene is situated on the mammalian Y-chromosome and exhibits some remarkable biological characteristics. It has the highest known copy number (CN) of all protein coding genes in the human and bovine genomes (up to 74 and 200, respectively) and also shows high individual variability. Although the biological function of TSPY has not yet been elucidated, its specific expression in the testis and several identified binding domains within the protein suggests roles in male reproduction. Here we describe the porcine TSPY, as a multicopy gene with three copies located on the short arm of the Y-chromosome with no variation at three exon loci among 20 animals of normal reproductive health from four breeds of domestic pigs (Piétrain, Landrace, Duroc and Yorkshire). To further investigate the speculation that porcine TSPY is not a copy number variant, we have included five Low-fertility boars and five boars with exceptional High-fertility records. Interestingly, there was no difference between the High- and Low-fertile groups, but we detected slightly lower TSPY CN at all three exons (2.56-2.85) in both groups, as compared to normal animals, which could be attributed to technical variability or somatic mosaicism. The results are based on both relative quantitative real-time PCR (qPCR) and droplet digital PCR (ddPCR). Chromosomal localization of the porcine TSPY was done using fluorescence in situ hybridization (FISH) with gene specific PCR probes.</p></div

    Highly dynamic temporal changes of TSPY gene copy number in aging bulls.

    No full text
    The Y-chromosomal TSPY gene is one of the highest copy number mammalian protein coding gene and represents a unique biological model to study various aspects of genomic copy number variations. This study investigated the age-related copy number variability of the bovine TSPY gene, a new and unstudied aspect of the biology of TSPY that has been shown to vary among cattle breeds, individual bulls and somatic tissues. The subjects of this prospective 30-month long study were 25 Holstein bulls, sampled every six months. Real-time quantitative PCR was used to determine the relative TSPY copy number (rTSPY CN) and telomere length in the DNA samples extracted from blood. Twenty bulls showed an altered rTSPY CN after 30 months, although only 9 bulls showed a significant change (4 significant increase while 5 significant decrease, P<0.01). The sequential sampling provided the flow of rTSPY CN over six observations in 30 months and wide-spread variation of rTSPY CN was detected. Although a clear trend of the direction of change was not identifiable, the highly dynamic changes of individual rTSPY CN in aging bulls were observed here for the first time. In summary we have observed a highly variable rTSPY CN in bulls over a short period of time. Our results suggest the importance of further long term studies of the dynamics of rTSPY CN variablility

    Y-chromosome specific fluorescence in situ hybridization signal of FISH probe#1–5 with Tyramide signal detection on a boar metaphase.

    No full text
    <p>DAPI stained metaphase chromosomes are converted grayscale and AF594 hybridization signal on the short arm of the Y-chromosome is red.</p

    Schematic view of the porcine TSPY gene (exons 1–5 in grey) and location of primers (green), TaqMan probes (red), PflMI enzyme cut positions (blue) and FISH probes (purple).

    No full text
    <p>Schematic view of the porcine TSPY gene (exons 1–5 in grey) and location of primers (green), TaqMan probes (red), PflMI enzyme cut positions (blue) and FISH probes (purple).</p

    TSPY CN by ddPCR at exons 1, 3 and 5 in normal animals from four breeds, High-fertile and Low-fertile animals.

    No full text
    <p>Columns represent the average value (±SD) of 5 animals. Letters mark values that are statistically different (p<0.05).</p
    corecore