6 research outputs found

    Investigating nucleation using the phase-field method

    Get PDF
    The first order phase transitions, like freezing of liquids, melting of solids, phase separation in alloys, vapor condensation, etc., start with nucleation, a process in which internal fluctuations of the parent phase lead to formation of small seeds of the new phase. Owing to different size dependence of (negative) volumetric and (positive) interfacial contributions to work of formation of such seeds, there is a critical size, at which the work of formation shows a maximum. Seeds that are smaller than the critical one decay with a high probability, while the larger ones have a good chance to grow further and reach a macroscopic size. Putting it in another way, to form the bulk new phase, the system needs to pass a thermodynamic barrier via thermal fluctuations. When the fluctuations of the parent phase alone lead to transition, the process is called homogeneous nucleation. Such a homogeneous process is, however, scarcely seen and requires very specific conditions in nature or in the laboratory. Usually, the parent phase resides in a container and/or it incorporates floating heterogeneities (solid particles, droplets, etc.). The respective foreign surfaces lead to ordering of the adjacent liquid layers, which in turn may assist the formation of the seeds, a process termed heterogeneous nucleation. Herein, we review how the phase-field techniques contributed to the understanding of various aspects of crystal nucleation in undercooled melts, and its role in microstructure evolution. We recall results achieved using both conventional phase-field techniques that rely on spatially averaged (coarse grained) order parameters in capturing the phase transition, as well as molecular scale phase-field approaches that employ time averaged fields, as happens in the classical density functional theories, including the recently developed phase-field crystal models

    Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy

    Get PDF
    A simple phase-field model is used to address anisotropic eutectic freezing on the nanoscale in two (2D) and three dimensions (3D). Comparing parameter-free simulations with experiments, it is demonstrated that the employed model can be made quantitative for Ag-Cu. Next, we explore the effect of material properties, and the conditions of freezing on the eutectic pattern. We find that the anisotropies of kinetic coefficient and the interfacial free energies (solid-liquid and solid-solid), the crystal misorientation relative to pulling, the lateral temperature gradient, play essential roles in determining the eutectic pattern. Finally, we explore eutectic morphologies, which form when one of the solid phases are faceted, and investigate cases, in which the kinetic anisotropy for the two solid phases are drastically different

    Orientation-field models for polycrystalline solidification: grain coarsening and complex growth forms

    Get PDF
    We compare two versions of the phase-field theory for polycrystalline solidification, both relying on the concept of orientation fields: one by Kobayashi et al. [Physica D 140 (2000) 141] and the other by Henry et al. [Phys. Rev. B 86 (2012) 054117]. Setting the model parameters so that the grain boundary energies and the time scale of grain growth are comparable in the two models, we first study the grain coarsening process including the limiting grain size distribution, and compare the results to those from experiments on thin films, to the models of Hillert, and Mullins, and to predictions by multiphase-field theories. Next, following earlier work by Gránásy et al. [Phys. Rev. Lett. 88 (2002) 206105; Phys. Rev. E 72 (2005) 011605], we extend the orientation field to the liquid state, where the orientation field is made to fluctuate in time and space, and employ the model for describing of multi-dendritic solidification, and polycrystalline growth, including the formation of “dizzy” dendrites disordered via the interaction with foreign particles

    Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model

    No full text
    Crystallization of supersaturated liquids usually starts by heterogeneous nucleation. Mounting evidence shows that even homogeneous nucleation in simple liquids takes place in two steps; first a dense amorphous precursor forms, and the crystalline phase appears via heterogeneous nucleation in/on the precursor cluster. Herein, we review recent results by a simple dynamical density functional theory, the phase-field crystal model, for (precursor-mediated) homogeneous and heterogeneous nucleation of nanocrystals. It will be shown that the mismatch between the lattice constants of the nucleating crystal and the substrate plays a decisive role in determining the contact angle and nucleation barrier, which were found to be non-monotonic functions of the lattice mismatch. Time dependent studies are essential as investigations based on equilibrium properties often cannot identify the preferred nucleation pathways. Modeling of these phenomena is essential for designing materials on the basis of controlled nucleation and/or nano-patterning

    Phase-field modeling of biomineralization in mollusks and corals: Microstructure vs formation mechanism

    Get PDF
    While biological crystallization processes have been studied on the microscale extensively, there is a general lack of models addressing the mesoscale aspects of such phenomena. In this work, we investigate whether the phase-field theory developed in materials science for describing complex polycrystalline structures on the mesoscale can be meaningfully adapted to model crystallization in biological systems. We demonstrate the abilities of the phase-field technique by modeling a range of microstructures observed in mollusk shells and coral skeletons, including granular, prismatic, sheet/columnar nacre, and sprinkled spherulitic structures. We also compare two possible micromechanisms of calcification: the classical route via ion-by-ion addition from a fluid state and a non-classical route, crystallization of an amorphous precursor deposited at the solidification front. We show that with appropriate choice of the model parameters microstructures similar to those found in biomineralized systems can be obtained along both routes, though the time-scale of the non-classical route appears to be more realistic. The resemblance of the simulated and natural biominerals suggests that, underneath the immense biological complexity observed in living organisms, the underlying design principles for biological structures may be understood with simple math, and simulated by phase-field theory

    Phase-field modeling of polycrystalline solidification, from needle crystals to spherulites: a review

    No full text
    Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly
    corecore