133 research outputs found

    Near-real-time damage estimation for buildings based on strong-motion recordings: An application to target areas in northeastern italy

    Get PDF
    The rapid estimation of expected impacts in case of an earthquake is extremely important for emergency managers and first responders. Current near-real-time damage assessment methods rely on ground-motion estimates and exposure or fragility datasets, in some cases integrating the shaking recorded at the site (e.g., from strong-motion monitoring networks). We propose a method that estimates the expected damages on buildings based on strong-motion recordings of a seismic event. The damage assessment is based on themaximumdrift (interstory) or the displacement, which is estimated by considering in a first approximation the behavior of a specific building typology as a single-degree-offreedom oscillator. The oscillator is characterized based on the analysis of the building stock and a large number of ambient vibration measurements performed in buildings. A specific damage state occurs when the interstory drift or displacement limits available in the literature for the specific building typology are exceeded. The method, here applied to a case study in northeastern Italy, can be applied to other seismic areas worldwide to provide quick, first-level estimates of expected damage

    Gas fields and large shallow seismogenic reverse faults are anticorrelated

    Get PDF
    We investigated the spatial relationships among 18 known seismogenic faults and 1651 wells drilled for gas exploitation in the main hydrocarbon province of northern-central Italy, a unique dataset worldwide. We adopted a GIS approach and a robust statistical technique, and found a significant anticorrelation between the location of productive wells and of the considered seismogenic faults, which are often overlain or encircled by unproductive wells. Our observations suggest that (a) earthquake ruptures encompassing much of the upper crust may cause gas to be lost to the atmosphere over geological time, and that (b) reservoirs underlain by smaller or aseismic faults are more likely to be intact. These findings, which are of inherently global relevance, have crucial implications for future hydrocarbon exploitation, for assessing the seismic-aseismic behaviour of large reverse faults, and for the public acceptance of underground energy and CO2 storage facilities-a pillar of future low carbon energy systems-in tectonically active areas

    Seismic hazard for the Trans Adriatic Pipeline (TAP). Part 2: broadband scenarios at the Fier Compressor Station (Albania)

    Get PDF
    AbstractTo ensure environmental and public safety, critical facilities require rigorous seismic hazard analysis to define seismic input for their design. We consider the case of the Trans Adriatic Pipeline (TAP), which is a pipeline that transports natural gas from the Caspian Sea to southern Italy, crossing active faults and areas characterized by high seismicity levels. For this pipeline, we develop a Probabilistic Seismic Hazard Assessment (PSHA) for the broader area, and, for the selected critical sites, we perform deterministic seismic hazard assessment (DSHA), by calculating shaking scenarios that account for the physics of the source, propagation, and site effects. This paper presents a DSHA for a compressor station located at Fier, along the Albanian coastal region. Considering the location of the most hazardous faults in the study site, revealed by the PSHA disaggregation, we model the ground motion for two different scenarios to simulate the worst-case scenario for this compressor station. We compute broadband waveforms for receivers on soft soils by applying specific transfer functions estimated from the available geotechnical data for the Fier area. The simulations reproduce the variability observed in the ground motion recorded in the near-earthquake source. The vertical ground motion is strong for receivers placed above the rupture areas and should not be ignored in seismic designs; furthermore, our vertical simulations reproduce the displacement and the static offset of the ground motion highlighted in recent studies. This observation confirms the importance of the DSHA analysis in defining the expected pipeline damage functions and permanent soil deformations

    Earthquake rupture forecasts for the mps19 seismic hazard model of Italy

    Get PDF
    In recent years, new approaches for developing earthquake rupture forecasts (ERFs) have been proposed to be used as an input for probabilistic seismic hazard assessment (PSHA). Zone-based approaches with seismicity rates derived from earthquake catalogs are commonly used in many countries as the standard for national seismic hazard models. In Italy, a single zone-based ERF is currently the basis for the official seismic hazard model. In this contribution, we present eleven new ERFs, including five zone-based, two smoothed seismicity-based, two fault-based, and two geodetic-based, used for a new PSH model in Italy. The ERFs were tested against observed seismicity and were subject to an elicitation procedure by a panel of PSHA experts to verify the scientific robustness and consistency of the forecasts with respect to the observations. Tests and elicitation were finalized to weight the ERFs. The results show a good response to the new inputs to observed seismicity in the last few centuries. The entire approach was a first attempt to build a community-based set of ERFs for an Italian PSHA model. The project involved a large number of seismic hazard practitioners, with their knowledge and experience, and the development of different models to capture and explore a large range of epistemic uncertainties in building ERFs, and represents an important step forward for the new national seismic hazard model

    Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks

    No full text
    The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation, chosen by EPRI to support the industrial parks study. Cogeneration benefits for park owners, tenants and the local utilities are presented. A method developed for selecting industrial park sites for cogeneration facilities and design and financing options are also discussed
    corecore