23 research outputs found
Canagliflozin and renal outcomes in type 2 diabetes and nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodiumâglucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with reninâangiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
Recommended from our members
Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice
Journal of Clinical Investigation.
Volume 128, Issue 6, 1 June 2018, Pages 2226-2238.Increasing evidence suggests a role for excessive intake of fructose in the Western diet as a contributor to the current epidemics of metabolic syndrome and obesity. Hereditary fructose intolerance (HFI) is a difficult and potentially lethal orphan disease associated with impaired fructose metabolism. In HFI, the deficiency of aldolase B results in the accumulation of intracellular phosphorylated fructose, leading to phosphate sequestration and depletion, increased adenosine triphosphate (ATP) turnover, and a plethora of conditions that lead to clinical manifestations such as fatty liver, hyperuricemia, Fanconi syndrome, and severe hypoglycemia. Unfortunately, there is currently no treatment for HFI, and avoiding sugar and fructose has become challenging in our society. In this report, through use of genetically modified mice and pharmacological inhibitors, we demonstrate that the absence or inhibition of ketohexokinase (Khk), an enzyme upstream of aldolase B, is sufficient to prevent hypoglycemia and liver and intestinal injury associated with HFI. Herein we provide evidence for the first time to our knowledge of a potential therapeutic approach for HFI. Mechanistically, our studies suggest that it is the inhibition of the Khk C isoform, not the A isoform, that protects animals from HFI
Recommended from our members
Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice
Increasing evidence suggests a role for excessive intake of fructose in the Western diet as a contributor to the current epidemics of metabolic syndrome and obesity. Hereditary fructose intolerance (HFI) is a difficult and potentially lethal orphan disease associated with impaired fructose metabolism. In HFI, the deficiency of aldolase B results in the accumulation of intracellular phosphorylated fructose, leading to phosphate sequestration and depletion, increased adenosine triphosphate (ATP) turnover, and a plethora of conditions that lead to clinical manifestations such as fatty liver, hyperuricemia, Fanconi syndrome, and severe hypoglycemia. Unfortunately, there is currently no treatment for HFI, and avoiding sugar and fructose has become challenging in our society. In this report, through use of genetically modified mice and pharmacological inhibitors, we demonstrate that the absence or inhibition of ketohexokinase (Khk), an enzyme upstream of aldolase B, is sufficient to prevent hypoglycemia and liver and intestinal injury associated with HFI. Herein we provide evidence for the first time to our knowledge of a potential therapeutic approach for HFI. Mechanistically, our studies suggest that it is the inhibition of the Khk C isoform, not the A isoform, that protects animals from HFI
Rehydration with fructose worsens dehydration-induced renal damage
Abstract Background Increasing evidence suggests heat stress induced chronic kidney disease (CKD) may be mediated by endogenous fructose generation and may be exacerbated by rehydration by fructose-containing solutions. We have recently reported a model of CKD induced by heat stress. Here we test the hypothesis that rehydration with fructose may induce worse kidney injury than rehydration with equal amounts of water, and we also test if this fructose-induced injury is associated with activation of inflammasomes in the kidney. Methods Mice were recurrently exposed to heat (39.5 C0 for 30Â min/h, 5 times daily for 5 wks) with rehydration consisting of 6Â ml each night of water (Heat, nâ=â7) or fructose (Heat+F, 10%, nâ=â7), and were compared to control mice on water (Control, nâ=â7) or fructose (Fructose, nâ=â7). Various markers of renal injury were assessed. Results Compared to control animals, there was a progressive worsening of renal injury (inflammation and fibrosis) with fructose alone, heat stress alone, and heat stress with fructose rehydration (Pâ<â0.01 by ANOVA). The combination of heat stress with rehydration with fructose was associated with increased intrarenal expression of the inflammasome markers, NLRP3 and IL-18, compared to heat stress alone. In addition, heat stress with or without fructose was associated with increased expression of caspase ââ3 and monocyte chemoattractant protein-1 levels. Fructose administration was also associated with an increase in serum copeptin levels (a biomarker of vasopressin) and elevated copeptin was also observed in mice undergoing heat stress alone. Conclusions These studies suggest that heat stress may activate intrarenal inflammasomes leading to inflammation and renal injury, and provide evidence that rehydration with fructose may accelerate the renal injury and inflammatory response
Increased Serum Sodium and Serum Osmolarity Are Independent Risk Factors for Developing Chronic Kidney Disease; 5 Year Cohort Study.
BACKGROUND:Epidemics of chronic kidney disease (CKD) not due to diabetes mellitus (DM) or hypertension have been observed among individuals working in hot environments in several areas of the world. Experimental models have documented that recurrent heat stress and water restriction can lead to CKD, and the mechanism may be mediated by hyperosmolarity that activates pathways (vasopressin, aldose reductase-fructokinase) that induce renal injury. Here we tested the hypothesis that elevated serum sodium, which reflects serum osmolality, may be an independent risk factor for the development of CKD. METHODS:This study was a large-scale, single-center, retrospective 5-year cohort study at Center for Preventive Medicine, St. Luke's International Hospital, Tokyo, Japan, between 2004 and 2009. We analyzed 13,201 subjects who underwent annual medical examination of which 12,041 subjects (age 35 to 85) without DM and/or CKD were enrolled. This analysis evaluated age, sex, body mass index, abdominal circumference, hypertension, dyslipidemia, hyperuricemia, fasting glucose, BUN, serum sodium, potassium, chloride and calculated serum osmolarity. RESULTS:Elevated serum sodium was an independent risk factor for development of CKD (OR: 1.03, 95% CI, 1.00-1.07) after adjusted regression analysis with an 18 percent increased risk for every 5 mmol/L change in serum sodium. Calculated serum osmolarity was also an independent risk factor for CKD (OR: 1.04; 95% CI, 1.03-1.05) as was BUN (OR: 1.08; 95% CI, 1.06-1.10) (independent of serum creatinine). CONCLUSIONS:Elevated serum sodium and calculated serum osmolarity are independent risk factors for developing CKD. This finding supports the role of limiting salt intake and preventing dehydration to reduce risk of CKD
Correction: Increased Serum Sodium and Serum Osmolarity Are Independent Risk Factors for Developing Chronic Kidney Disease; 5 Year Cohort Study.
[This corrects the article DOI: 10.1371/journal.pone.0169137.]
Role of bicarbonate supplementation on urine uric acid crystals and diabetic tubulopathy in adults with type 1 diabetes
Uricosuria and crystallization are increasingly recognized risk factors for diabetic tubulopathy. This pilot clinical trial aimed to determine the acute effect of urinary alkalinization using oral sodium bicarbonate (NaHCO3) on UA crystals in adults with type 1 diabetes (T1D). Adults with T1D, ages 18 to 65 years (n = 45, 60% female, HbA1c, 7.5 ± 1.2%, 20.2 ± 9.3 years duration) without chronic kidney disease (eGFR â„60 mL/min/1.73 m2 and albumin-to-creatinine ratio \u3c 30 mg/g) received 2 doses of 1950 mg oral NaHCO3 over 24 hours. Fasting urine and serum were collected pre- and post-intervention. UA crystals were identified under polarized microscopy. Urine measurements included: osmolality, pH, UA, creatinine and kidney injury molecule-1 (KIM-1). NaHCO3 therapy increased mean ± SD urine pH from 6.1 ± 0.7 to 6.5 ± 0.7 (P \u3c.0001). Prior to therapy, 31.0% of participants had UA crystals vs 6.7% post therapy (P =.005). Change in urine pH inversely correlated with change in urine KIM-1 (r:â0.51, P =.0003). In addition, change in urine UA over 24 hours correlated with change in urine KIM-1 (r:0.37, P =.01). In conclusion, oral NaHCO3 normalized urine pH and decreased UA crystals, and may hold promise as an inexpensive and safe tubulo-protective intervention in individuals with T1D
Aging-associated renal disease in mice is fructokinase dependent
Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (<5%) fructose content. At the end of 2 yr, wild-type mice showed elevations in systolic blood pressure, mild albuminuria, and glomerular changes with mesangial matrix expansion, variable mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration.
aging is associated with the development of glomerulosclerosis and tubulointerstitial disease in humans and rodents (12, 23, 35). Interestingly, aging-associated renal injury can vary greatly, and some individuals may show minimal reduction in kidney function and relatively preserved kidney histology with age. This raises the possibility that some of the ânormalâ deterioration in renal function during the aging process observed in Western cultures may be subtle renal injury driven by diet or other mechanisms.
The ingestion of sugar has been associated with albuminuria in humans (3, 4, 31). Sugar contains fructose and glucose, and evidence suggests that the fructose component may be responsible for the renal injury. Specifically, fructose is metabolized in the proximal tubule by fructokinase, and this results in transient ATP depletion with the generation of oxidative stress and inflammatory mediators such as monocyte chemoattractant protein-1 (MCP-1) (5). The administration of fructose to rats results in modest proximal tubular injury, and has also been shown to accelerate preexistent kidney disease (9, 26). Fructose metabolism also results in the generation of uric acid, and this is associated with the development of afferent arteriolar disease with loss of autoregulation, resulting in glomerular hypertension (29, 30). While most studies have focused on dietary fructose, fructose can also be generated in the kidney and liver by the aldose reductase-sorbitol dehydrogenase polyol pathway, and modest fructose levels can be detected even in fasting animals (13, 21). Indeed, fructose can be generated in the kidney in diabetes or with dehydration, and in both situations may lead to local renal damage (20, 28).
We hypothesized that some of the renal damage associated with aging could be due to fructose-dependent renal injury, even in the absence of dietary fructose. To investigate this hypothesis, we studied aging wild-type mice and aging mice that could not metabolize fructose via the fructokinase-dependent pathway [fructokinase knockout, also known as ketohexokinase knockout (KHK-A/C KO mice)]. KHK-A/C KO mice have a normal phenotype when young (6), but have not been examined in the aging state