161 research outputs found

    Custodiol-N, the novel cardioplegic solution reduces ischemia/reperfusion injury after cardiopulmonary bypass

    Get PDF
    Backgrounds: On the basis of Custodiol preservation and cardioplegic solution a novel cardioplegic solution was developed to improve the postischemic cardiac and endothelial function. In this study, we investigated whether its reduced cytotoxicity and its ability to reduce reactive oxygen species generation during hypoxic condition have beneficial effects in a clinically relevant canine model of CPB. Methods: 12 dogs underwent cardiopulmonary bypass with 60 minutes of hypothermic cardiac arrest. Dogs were divided into 2 groups: Custodiol (n = 6) and Custodiol-N (n = 6) (addition of L-arginin, N-α-acetyl-L-histidine and iron-chelators: deferoxamine and LK-614). Left ventricular hemodynamic variables were measured by a combined pressure-volume conductance catheter at baseline and after 60 minutes of reperfusion. Coronary blood flow, myocardial ATP content, plasma nitrate/nitrite and plasma myeloperoxidase levels were also determined. Results: The use of Custodiol-N cardioplegic solution improved coronary blood flow (58 ± 7 ml/min vs. 26 ± 3 ml/min) and effectively prevented cardiac dysfunction after cardiac arrest. In addition, the myocardial ATP content (12,8 ± 1,0 μmol/g dry weight vs. 9,5 ± 1,5 μmol/g dry weight) and plasma nitrite (1,1 ± 0,3 ng/ml vs. 0,5 ± 0,2 ng/ml) were significantly higher after application of the new cardioplegic solution. Furthermore, plasma myeloperoxidase level (3,4 ± 0,4 ng/ml vs. 4,3 ± 2,2 ng/ml) significantly decreased in Custodiol-N group. Conclusions: The new HTK cardioplegic solution (Custodiol-N) improved myocardial and endothelial function after cardiopulmonary bypass with hypothermic cardiac arrest. The observed protective effects imply that the Custodiol-N could be the next generation cardioplegic solution in the protection against ischemia-reperfusion injury in cardiac surgery

    Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models

    Get PDF
    BACKGROUND: Measurement of systolic and diastolic function in animal models is challenging by conventional non-invasive methods. Therefore, we aimed at comparing speckle-tracking echocardiography (STE)-derived parameters to the indices of left ventricular (LV) pressure-volume (PV) analysis to detect cardiac dysfunction in rat models of type-1 (T1DM) and type-2 (T2DM) diabetes mellitus. METHODS: Rat models of T1DM (induced by 60 mg/kg streptozotocin, n = 8) and T2DM (32-week-old Zucker Diabetic Fatty rats, n = 7) and corresponding control animals (n = 5 and n = 8, respectively) were compared. Echocardiography and LV PV analysis were performed. LV short-axis recordings were used for STE analysis. Global circumferential strain, peak strain rate values in systole (SrS), isovolumic relaxation (SrIVR) and early diastole (SrE) were measured. LV contractility, active relaxation and stiffness were measured by PV analysis. RESULTS: In T1DM, contractility and active relaxation were deteriorated to a greater extent compared to T2DM. In contrast, diastolic stiffness was impaired in T2DM. Correspondingly, STE described more severe systolic dysfunction in T1DM. Among diastolic STE parameters, SrIVR was more decreased in T1DM, however, SrE was more reduced in T2DM. In T1DM, SrS correlated with contractility, SrIVR with active relaxation, while in T2DM SrE was related to cardiac stiffness, cardiomyocyte diameter and fibrosis. CONCLUSIONS: Strain and strain rate parameters can be valuable and feasible measures to describe the dynamic changes in contractility, active relaxation and LV stiffness in animal models of T1DM and T2DM. STE corresponds to PV analysis and also correlates with markers of histological myocardial remodeling
    corecore