102 research outputs found

    Rheology and Dynamics of Associative Polymers in Shear and Extension: Theory and Experiment

    Get PDF
    Submitted to Macromolecules, July 2005We investigate the steady and transient shear and extensional rheological properties of a series of model hydrophobically modified ethoxylate-urethane (HEUR) polymers with varying degrees of hydrophobicity. A new nonlinear two-species network model for these telechelic polymers is described which incorporates appropriate molecular mechanisms for the creation and destruction of elastically-active chains. Like other recent models we incorporate the contributions of both the bridging chains (those between micelles) and the dangling chains to the final stress tensor. This gives rise to two distinct relaxation time scales; a short Rouse time for the relaxing chains and a longer network time–scale that depends on the aggregation number and strength of the micellar junctions. The evolution equations for the fraction of elastically-active chains and for the conformation tensors of each species are solved to obtain the total stress arising from imposed deformations. The model contains a single non-linear parameter and incorporates the non-linear chain extension, the shear-induced enhancement of associations and the stretch-induced dissociation of hydrophobic chains. In contrast to earlier closed-form models, we are able to obtain quantitative agreement between experimental measurements and the model predictions for three different series of telechelic polymers over a range of concentrations. The scaling of both the zero shear viscosity and the effective network relaxation time show good agreement with those measured in experiments. The model also quantitatively captures both the shear-thickening and subsequent shear-thinning observed in the rheology at high deformation rates and predicts transient extensional stress growth curves in close agreement with those measured using a filament stretching rheometer.Schlumberger Foundatio

    3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.bprint.2017.12.001 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/3D bioprinting is a novel platform for engineering complex, three-dimensional (3D) tissues that mimic real ones. The development of hybrid bioinks is a viable strategy that integrates the desirable properties of the constituents. In this work, we present a hybrid bioink composed of alginate and cellulose nanocrystals (CNCs) and explore its suitability for extrusion-based bioprinting. This bioink possesses excellent shear-thinning property, can be easily extruded through the nozzle, and provides good initial shape fidelity. It has been demonstrated that the viscosities during extrusion were at least two orders of magnitude lower than those at small shear rates, enabling the bioinks to be extruded through the nozzle (100µm inner diameter) readily without clogging. This bioink was then used to print a liver-mimetic honeycomb 3D structure containing fibroblast and hepatoma cells. The structures were crosslinked with CaCl2 and incubated and cultured for 3 days. It was found that the bioprinting process resulted in minimal cell damage making the alginate/CNC hybrid bioink an attractive bioprinting material.Natural Sciences and Engineering Research Council (NSERC) of Canada (grant no. RGPIN-2016-04398

    Complications of Bezoar in Children: What Is New?

    Get PDF
    A bezoar is a mass found trapped in the gastrointestinal system. The condition may be associated with pica, especially in developmentally retarded children. Clinical manifestations are usually nonspecific. Endoscopic diagnosis and removal of the foreign materials is often indicated. Occasionally, severe complications may occur. We report two cases to illustrate the clinical features and complications in these children. In the first case, a reliable history was not obtained in the developmentally delayed girl which precluded prompt diagnosis, but the grossly dilated stomach on plain abdominal radiograph gave clues to an underlying insidious mechanical obstruction of upper gastrointestinal tract. In the second case of a normal child, the unrelenting symptoms and weight loss prompt further investigations which revealed the diagnosis. Literature on pediatric bezoar is reviewed. Oesophagoduodenoscopy is the investigation of choice for diagnostic confirmation, but surgical facilities must be available to deal with acute complications

    Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules

    Get PDF
    Vitamin C (VC), widely used in food, pharmaceutical and cosmetic products, is susceptible to degradation, and new formulations are necessary to maintain its stability. To address this challenge, VC encapsulation was achieved via electrostatic interaction with glycidyltrimethylammonium chloride (GTMAC)-chitosan (GCh) followed by cross-linking with phosphorylated-cellulose nanocrystals (PCNC) to form VC-GCh-PCNC nanocapsules. The particle size, surface charge, degradation, encapsulation efficiency, cumulative release, free-radical scavenging assay, and antibacterial test were quantified. Additionally, a simulated human gastrointestinal environment was used to assess the efficacy of the encapsulated VC under physiological conditions. Both VC loaded, GCh-PCNC, and GCh-Sodium tripolyphosphate (TPP) nanocapsules were spherical with a diameter of 450 ​± ​8 and 428 ​± ​6 ​nm respectively. VC-GCh-PCNC displayed a higher encapsulation efficiency of 90.3 ​± ​0.42% and a sustained release over 14 days. The release profiles were fitted to the first-order and Higuchi kinetic models with R2 values greater than 0.95. VC-GCh-PCNC possessed broad-spectrum antibacterial activity with a minimum inhibition concentration (MIC) of 8–16 ​μg/mL. These results highlight that modified CNC-based nano-formulations can preserve, protect and control the release of active compounds with improved antioxidant and antibacterial properties for food and nutraceutical applications.Professor K. C. Tam wishes to acknowledge the funding from CFI and NSERC. CelluForce and AboraNano supported this CNC based research

    Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in Hepatocellular Carcinoma: the PLANET study

    Get PDF
    Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for Hepatocellular Carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across TNM stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types

    Mitophagy plays a central role in mitochondrial ageing

    Get PDF
    The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing

    Dijet Resonance Search with Weak Supervision Using root S=13 TeV pp Collisions in the ATLAS Detector

    Get PDF
    This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A → BC, for mA ∼ OðTeVÞ, mB; mC ∼ Oð100 GeVÞ and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 ffiffi s p ¼ 13 TeV pp collision dataset of 139 fb−1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA ¼ 3 TeV and mB ≳ 200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model boson

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore