696 research outputs found

    Meir Wetzler, MD

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111978/1/cncr29391.pd

    Clinical characteristics and whole exome/transcriptome sequencing of coexisting chronic myeloid leukemia and myelofibrosis

    Full text link
    Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders that can be classified on the basis of genetic, clinical, phenotypic features. Genetic lesions such as JAK2 mutations and BCRâ ABL translocation are often mutually exclusive in MPN patients and lead to essential thrombocythemia, polycythemia vera, or myelofibrosis or chronic myeloid leukemia, respectively. Nevertheless, coexistence of these genetic aberrations in the same patient has been reported. Whether these aberrations occur in the same stem cell or a different cell is unclear, but an unstable genome in the HSCs seems to be the common antecedent. In an effort to characterize the underlying genetic events that might contribute to the appearance of more than one MPN in a patient, we studied neoplastic cells from patients with dual MPNs by nextâ generation sequencing. We observed that most patients with two MPNs harbored mutations in genes known to contribute to clonal hematopoiesis through altered epigenetic regulation such as TET2, ASXL1/2, SRSF2, and IDH2 at varying frequencies (1%â 47%). In addition, we found that some patients also harbored oncogenic mutations in N/KRAS, TP53, BRAF, EZH2, and GNAS at low frequencies, which probably represent clonal evolution. These findings support the hypothesis that hematopoietic cells from MPN patients harbor multiple genetic aberrations, some of which can contribute to clonal dominance. Acquiring mutations in JAK2/CALR/MPL or the BCRâ ABL translocation probably drive the oncogenic phenotype towards a specific MPN. Further, we propose that the acquisition of BCRâ ABL in these patients is frequently a secondary event resulting from an unstable genome.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136751/1/ajh24728.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136751/2/ajh24728_am.pd

    Primary myelofibrosis evolving to an aplastic appearing marrow

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144664/1/ccr31618.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144664/2/ccr31618_am.pd

    PR1-Specific T Cells Are Associated with Unmaintained Cytogenetic Remission of Chronic Myelogenous Leukemia After Interferon Withdrawal

    Get PDF
    Interferon-alpha (IFN) induces complete cytogenetic remission (CCR) in 20-25% CML patients and in a small minority of patients; CCR persists after IFN is stopped. IFN induces CCR in part by increasing cytotoxic T lymphocytes (CTL) specific for PR1, the HLA-A2-restricted 9-mer peptide from proteinase 3 and neutrophil elastase, but it is unknown how CCR persists after IFN is stopped.We reasoned that PR1-CTL persist and mediate CML-specific immunity in patients that maintain CCR after IFN withdrawal. We found that PR1-CTL were increased in peripheral blood of 7/7 HLA-A2+ patients during unmaintained CCR from 3 to 88 months after IFN withdrawal, as compared to no detectable PR1-CTL in 2/2 IFN-treated CML patients not in CCR. Unprimed PR1-CTL secreted IFNgamma and were predominantly CD45RA+/-CD28+CCR7+CD57-, consistent with functional naïve and central memory (CM) T cells. Similarly, following stimulation, proliferation occurred predominantly in CM PR1-CTL, consistent with long-term immunity sustained by self-renewing CM T cells. PR1-CTL were functionally anergic in one patient 6 months prior to cytogenetic relapse at 26 months after IFN withdrawal, and in three relapsed patients PR1-CTL were undetectable but re-emerged 3-6 months after starting imatinib.These data support the hypothesis that IFN elicits CML-specific CM CTL that may contribute to continuous CCR after IFN withdrawal and suggest a role for T cell immune therapy with or without tyrosine kinase inhibitors as a strategy to prolong CR in CML

    Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy.

    Get PDF
    Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization

    Transfer RNA-derived small RNAs in the cancer transcriptome

    Get PDF
    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing
    corecore