14 research outputs found

    Effect of Rayleigh Number on Internal Eccentricity in a Heated Horizontal Elliptical Cylinder to its Coaxial Square Enclosure

    No full text
    This paper deals with numerical investigation of a natural convective flow in a horizontal annular space between a heated square inner cylinder and a cold elliptical outer cylinder with a Newtonian fluid. Uniform temperatures are imposed along walls of the enclosure. The governing equations of the problem were solved numerically by the commercial code Fluent, based on the finite volume method and the Boussinesq approximation. The effects of Geometry Ratio GR and Rayleigh numbers on fluid flow and heat transfer performance are investigated. The Rayleigh number is varied from 103 to 106. Throughout the study the relevant results are presented in terms of isotherms, and streamlines. From the results, we found that the increase in the Geometry Ratio B leads to an increase of the heat transfer coefficient. The heat transfer rate in the annulus is translated in terms of the average Nusselt numbers along the enclosure’s sides. Tecplot 7 program was used to plot the curves which cleared these relations and isotherms and streamlines which illustrate the behavior of air through the channel and its variation with other parameters. The results for the streamlines, isotherms, local and average Nusselt numbers average Nusselt numbers are compared with previous works and show good agreement

    Effect of Rayleigh Number on Internal Eccentricity in a Heated Horizontal Elliptical Cylinder to its Coaxial Square Enclosure

    No full text
    This paper deals with numerical investigation of a natural convective flow in a horizontal annular space between a heated square inner cylinder and a cold elliptical outer cylinder with a Newtonian fluid. Uniform temperatures are imposed along walls of the enclosure. The governing equations of the problem were solved numerically by the commercial code Fluent, based on the finite volume method and the Boussinesq approximation. The effects of Geometry Ratio GR and Rayleigh numbers on fluid flow and heat transfer performance are investigated. The Rayleigh number is varied from 103 to 106. Throughout the study the relevant results are presented in terms of isotherms, and streamlines. From the results, we found that the increase in the Geometry Ratio B leads to an increase of the heat transfer coefficient. The heat transfer rate in the annulus is translated in terms of the average Nusselt numbers along the enclosure’s sides. Tecplot 7 program was used to plot the curves which cleared these relations and isotherms and streamlines which illustrate the behavior of air through the channel and its variation with other parameters. The results for the streamlines, isotherms, local and average Nusselt numbers average Nusselt numbers are compared with previous works and show good agreement

    Numerical study of heating transfer by natural convection in an inclined elliptical cylinder charged with nanofluid

    No full text
    In this paper, thermal transfer with natural convection in a tilted annular cylinder with a Cu-water nanofluid has been numerically studied. The hot interior and cold exterior elliptical surfaces of the enclosure were maintained at constant temperatures Th and Tc , respectively. The governing equations were solved by the stream function-vorticity approach. The finite volume approach was utilized to discretise the controlling equations. The volume fraction range of the nanoparticles and the Rayleigh number was as follows: 0<ϕ<0.08 and 10^4<Ra<10^6, respectively. The inclination angles were γ=30°,45°,and 60°. Results were given as isotherm contours, streamlines, average and local Nusselt numbers. The results indicate that the thermal transfer ratio increases with an increase in the tilt angle, regardless of the nanoparticle size values. and the impact of the inclination angle on the heating transfer rate is more important the higher the Rayleigh number and the more convection there is

    Heat transfer by natural convection from a heated square inner cylinder to its elliptical outer enclosure utilizing nanofluids

    No full text
    In this paper a numerical study of natural convection of stationary laminar heat transfers in a horizontal ring between a heated square inner cylinder and a cold elliptical outer cylinder is presented. A Cu-water nanofluid flows through this annular space. Different values of the Rayleigh number and volume fraction of nanoparticles are studied. The system of equations governing the problem was solved numerically by the fluent calculation code based on the finite volume method and on the Boussinesq approximation. The interior and exterior surfaces are kept at constant temperature. The study is carried out for Rayleigh numbers ranging from 310 to 510. We have studied the effects of different Rayleigh numbers and volume fraction of nanoparticles on natural convection. The results are presented as isotherms, isocurrents, and local and mean Nusselt numbers. The aim of this study is to study the influence of the thermal Rayleigh number and volume fraction of nanoparticles on the heat transfer rate
    corecore