79 research outputs found

    Direct visualization of lipid aggregates in native human bile by light- and cryo-transmission electron-microscopy

    Get PDF
    AbstractThe evolution of microstructures present in human gallbladder and hepatic bile was observed simultaneously by video-enhanced light microscopy (VELM) and transmission electron microscopy of vitrified specimens (cryo-TEM), as a function of time after withdrawal from patients. Fresh centrifuged gallbladder bile samples contained small (6 nm) spherical micelles in coexistence with vesicles (40 nm). Out of the seven bile samples investigated four contained, in addition, two types of elongated aggregates that have not been previously described. Uncentrifuged gallbladder bile also contained a mixture of ribbon- and plate-like crystals seen by VELM, but not by cryo-TEM. In aged (3–6-week-old) gallbladder bile samples VELM also revealed spiral and helical crystal structures. No such crystals were present in hepatic bile samples, although microcrystals, not observable by VELM were seen by cryo-TEM in addition to micelles and vesicles. The similarity of these observations to those observed in bile models lends strong support for the validity of the model systems. Furthermore, the presence of microcrystals in hepatic bile samples, apparently devoid of crystals by light microscopy, indicates that under certain conditions the common criterion of ‘nueleation time’ (NT), based on light microscopy, does not represent the real time of nucleation. In the human bile samples investigated in this study the dissociation between NT and the time of observation of microcrystals was seen in hepatic but not in gallbladder bile samples. Hence, crystal growth may be rate limiting only in dilute biles

    179. Correcting the Bleeding Phenotype in Hemophilia Ausing Lentivirally FVIII-Corrected Endothelial Cells Differentiated from Hemophilic Induced Pluripotent Stem Cell (iPSC)

    Get PDF
    Hemophilia A (HA) is a bleeding disorder caused by factor VIII (FVIII) gene mutations.Somatic cells can be reprogrammed to generate autologous, disease-free iPSCs, then differentiated into cell targetsrelevant for gene and cell therapy. Our aim is to develop a novel HA treatment strategy generating FVIII-corrected patient-specific iPSCs from peripheral blood cells anddifferentiating them into functional endothelial cells (ECs), secreting FVIII after transplantation

    Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential

    Get PDF
    A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol

    Identification of a novel DGKa inhibitor for XLP-1 therapy by virtual screening

    Get PDF
    As part of an effort to identify druggable diacylglycerol kinase alpha (DGKa) inhibitors, we used an insilico approach based on chemical homology with the two commercially available DGKa inhibitors R59022 and R59949. Ritanserin and compound AMB639752 emerged from the screening of 127 compounds, showing an inhibitory activity superior to the two commercial inhibitors, being furthermore specific for the alpha isoform of diacylglycerol kinase. Interestingly, AMB639752 was also devoid of serotoninergic activity. The ability of both ritanserin and AMB639752, by inhibiting DGKa in intact cells, to restore restimulation induced cell death (RICD) in SAP deficient lymphocytes was also tested. Both compounds restored RICD at concentrations lower than the two previously available inhibitors, indicating their potential use for the treatment of X-linked lymphoproliferative disease 1 (XLP-1), a rare genetic disorder in which DGKa activity is deregulated

    Polylysine Enriched Matrices: A Promising Approach for Vascular Grafts

    Get PDF
    Cardiovascular diseases represent the leading cause of death in developed countries. Modern surgical methods show poor efficiency in the substitution of small-diameter arteries (<6 mm). Due to the difference in mechanical properties between the native artery and the substitute, the behavior of the vessel wall is a major cause of inefficient substitutions. The use of decellularized scaffolds has shown optimal prospects in different applications for regenerative medicine. The purpose of this work was to obtain polylysine-enriched vascular substitutes, derived from decellularized porcine femoral and carotid arteries. Polylysine acts as a matrix cross-linker, increasing the mechanical resistance of the scaffold with respect to decellularized vessels, without altering the native biocompatibility and hemocompatibility properties. The biological characterization showed an excellent biocompatibility, while mechanical tests displayed that the Young’s modulus of the polylysine-enriched matrix was comparable to native vessel. Burst pressure test demonstrated strengthening of the polylysine-enriched matrix, which can resist to higher pressures with respect to native vessel. Mechanical analyses also show that polylysine-enriched vessels presented minimal degradation compared to native. Concerning hemocompatibility, the performed analyses show that polylysine-enriched matrices increase coagulation time, with respect to commercial Dacron vascular substitutes. Based on these findings, polylysine-enriched decellularized vessels resulted in a promising approach for vascular substitution

    The Complex Journey of the Calcium Regulation Downstream of TAS2R Activation

    No full text
    Bitter taste receptors (TAS2Rs) have recently arisen as a potential drug target for asthma due to their localization in airway cells. These receptors are expressed in all cell types of the respiratory system comprising epithelial, smooth muscle and immune cells; however, the expression pattern of the subtypes is different in each cell type and, accordingly, so is their role, for example, anti-inflammatory or bronchodilator. The most challenging aspect in studying TAS2Rs has been the identification of the downstream signaling cascades. Indeed, TAS2R activation leads to canonical IP3-dependent calcium release from the ER, but, alongside, there are other mechanisms that differ according to the histological localization. In this review, we summarize the current knowledge on the cytosolic calcium modulation downstream of TAS2R activation in the epithelial, smooth muscle and immune cells of the airway system

    Calcineurin Signalling in Astrocytes: From Pathology to Physiology and Control of Neuronal Functions

    No full text
    Calcineurin (CaN), a Ca2+/calmodulin-activated serine/threonine phosphatase, acts as a Ca2+-sensitive switch regulating cellular functions through protein dephosphorylation and activation of gene transcription. In astrocytes, the principal homeostatic cells in the CNS, over-activation of CaN is known to drive pathological transcriptional remodelling, associated with neuroinflammation in diseases such as Alzheimer's disease, epilepsy and brain trauma. Recent reports suggest that, in physiological conditions, the activity of CaN in astrocytes is transcription-independent and is required for maintenance of basal protein synthesis rate and activation of astrocytic Na+/K+ pump thereby contributing to neuronal functions such as neuronal excitability and memory formation. In this contribution we overview the role of Ca2+ and CaN signalling in astroglial pathophysiology focusing on the emerging physiological role of CaN in astrocytes. We propose a model for the context-dependent switch of CaN activity from the post-transcriptional regulation of cell proteostasis in healthy astrocytes to the CaN-dependent transcriptional activation in neuroinflammation-associated diseases

    Getting everyone to agree on gene signatures for murine macrophage polarization in vitro.

    No full text
    Macrophages, key players in the innate immune system, showcase remarkable adaptability. Derived from monocytes, these phagocytic cells excel in engulfing and digesting pathogens and foreign substances as well as contributing to antigen presentation, initiating and regulating adaptive immunity. Macrophages are highly plastic, and the microenvironment can shaper their phenotype leading to numerous distinct polarized subsets, exemplified by the two ends of the spectrum: M1 (classical activation, inflammatory) and M2 (alternative activation, anti-inflammatory). RNA sequencing (RNA-Seq) has revolutionized molecular biology, offering a comprehensive view of transcriptomes. Unlike microarrays, RNA-Seq detects known and novel transcripts, alternative splicing, and rare transcripts, providing a deeper understanding of genome complexity. Despite the decreasing costs of RNA-Seq, data consolidation remains limited, hindering noise reduction and the identification of authentic signatures. Macrophages polarization is routinely ascertained by qPCR to evaluate those genes known to be characteristic of M1 or M2 skewing. Yet, the choice of these genes is literature- and experience-based, lacking therefore a systematic approach. This manuscript builds on the significant increase in deposited RNA-Seq datasets to determine an unbiased and robust murine M1 and M2 polarization profile. We now provide a consolidated list of global M1 differentially expressed genes (i.e. robustly modulated by IFN-γ, LPS, and LPS+ IFN-γ) as well as consolidated lists of genes modulated by each stimulus (IFN-γ, LPS, LPS+ IFN-γ, and IL-4)
    • …
    corecore