451 research outputs found

    Gupta-Bleuler quantization for minimally coupled scalar fields in de Sitter space

    Get PDF
    We present in this paper a fully covariant quantization of the minimally-coupled massless field on de Sitter space. We thus obtain a formalism free of any infrared (e.g logarithmic) divergence. Our method is based on a rigorous group theoretical approach combined with a suitable adaptation (Krein spaces) of the Wightman-G\"{a}rding axiomatic for massless fields (Gupta-Bleuler scheme). We make explicit the correspondence between unitary irreducible representations of the de Sitter group and the field theory on de Sitter space-time. The minimally-coupled massless field is associated with a representation which is the lowest term of the discrete series of unitary representations of the de Sitter group. In spite of the presence of negative norm modes in the theory, no negative energy can be measured: expressions as \le n_{k_1}n_{k_2}...|T_{00}|n_{k_1}n_{k_2}...\re are always positive.Comment: 20 pages, appear in class. quantum gra

    A Geometrical Method of Decoupling

    Full text link
    The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries - like midplane symmetrie - are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as for instance the method of Teng and Edwards. In a preceeding paper it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all thinkable cases. Hence a systematic derivation of a more general treatment seemed advisable. In a second paper the author suggested the use of real Dirac matrices as basic tools to coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. It is shown that this algebraic decoupling is closely related to a geometric "decoupling" by the orthogonalization of the vectors E\vec E, B\vec B and P\vec P, that were introduced with the so-called "electromechanical equivalence". We present a structure-preserving block-diagonalization of symplectic or Hamiltonian matrices, respectively. When used iteratively, the decoupling algorithm can also be applied to n-dimensional systems and requires O(n2){\cal O}(n^2) iterations to converge to a given precision.Comment: 13 pages, 1 figur

    Analysis of OPM potentials for multiplet states of 3d transition metal atoms

    Full text link
    We apply the optimized effective potential method (OPM) to the multiplet energies of the 3dn^n transition metal atoms, where the orbital dependence of the energy functional with respect to orbital wave function is the single-configuration HF form. We find that the calculated OPM exchange potential can be represented by the following two forms. Firstly, the difference between OPM exchange potentials of the multiplet states can be approximated by the linear combination of the potentials derived from the Slater integrals F2(3d,3d)F^2({\rm 3d,3d}) and F4(3d,3d)F^4({\rm 3d,3d}) for the average energy of the configuration. Secondly, the OPM exchange potential can be expressed as the linear combination of the OPM exchange potentials of the single determinants.Comment: 15 pages, 6 figures, to be published in J. Phys.

    Wigner's DD-matrix elements for SU(3)SU(3) - A Generating Function Approach

    Get PDF
    A generating function for the Wigner's DD-matrix elements of SU(3)SU(3) is derived. From this an explicit expression for the individual matrix elements is obtained in a closed form.Comment: RevTex 3.0, 22 pages, no figure

    Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls

    Get PDF
    Here we discuss proteomic analyses of whole cell preparations of the mosquito stages of malaria parasite development (i.e. gametocytes, microgamete, ookinete, oocyst and sporozoite) of Plasmodium berghei. We also include critiques of the proteomes of two cell fractions from the purified ookinete, namely the micronemes and cell surface. Whereas we summarise key biological interpretations of the data, we also try to identify key methodological constraints we have met, only some of which we were able to resolve. Recognising the need to translate the potential of current genome sequencing into functional understanding, we report our efforts to develop more powerful combinations of methods for the in silico prediction of protein function and location. We have applied this analysis to the proteome of the male gamete, a cell whose very simple structural organisation facilitated interpretation of data. Some of the in silico predictions made have now been supported by ongoing protein tagging and genetic knockout studies. We hope this discussion may assist future studie

    Variational perturbation approach to the Coulomb electron gas

    Full text link
    The efficiency of the variational perturbation theory [Phys. Rev. C {\bf 62}, 045503 (2000)] formulated recently for many-particle systems is examined by calculating the ground state correlation energy of the 3D electron gas with the Coulomb interaction. The perturbation beyond a variational result can be carried out systematically by the modified Wick's theorem which defines a contraction rule about the renormalized perturbation. Utilizing the theorem, variational ring diagrams of the electron gas are summed up. As a result, the correlation energy is found to be much closer to the result of the Green's function Monte Carlo calculation than that of the conventional ring approximation is.Comment: 4 pages, 3 figure

    Parameterized optimized effective potential for atoms

    Full text link
    The optimized effective potential equations for atoms have been solved by parameterizing the potential. The expansion is tailored to fulfill the known asymptotic behavior of the effective potential at both short and long distances. Both single configuration and multi configuration trial wave functions are implemented. Applications to several atomic systems are presented improving previous works. The results here obtained are very close to those calculated in either the Hartree-Fock and the multi configurational Hartree-Fock framework.Comment: 8 pages, 3 figure

    Spherical Universe topology and the Casimir effect

    Full text link
    The mode problem on the factored 3--sphere is applied to field theory calculations for massless fields of spin 0, 1/2 and 1. The degeneracies on the factors, including lens spaces, are neatly derived in a geometric fashion. Vacuum energies are expressed in terms of the polyhedral degrees and equivalent expressions given using the cyclic decomposition of the covering group. Scalar functional determinants are calculated and the spectral asymmetry function treated by the same approach with explicit forms on one-sided lens spaces.Comment: 33 pages, 1 figure. Typos corrected and one reference adde

    Separation of the Exchange-Correlation Potential into Exchange plus Correlation: an Optimized Effective Potential Approach

    Full text link
    Most approximate exchange-correlation functionals used within density functional theory are constructed as the sum of two distinct contributions for exchange and correlation. Separating the exchange component from the entire functional is useful since, for exchange, exact relations exist under uniform density scaling and spin scaling. In the past, accurate exchange-correlation potentials have been generated from essentially exact densities constructed using information from either quantum chemistry or quantum Monte Carlo calculations but they have not been correctly decomposed into their separate exchange and correlation components, except for two-electron systems. exchange and correlation components (except for two-electron systems). Using a recently proposed method, equivalent to the solution of an optimized effective potential problem with the corresponding orbitals replaced by the exact Kohn-Sham orbitals, we obtain the separation according to the density functional theory definition. We compare the results for the Ne and Be atoms with those obtained by the previously used approximate separation scheme

    Connection Between Type A and E Factorizations and Construction of Satellite Algebras

    Full text link
    Recently, we introduced a new class of symmetry algebras, called satellite algebras, which connect with one another wavefunctions belonging to different potentials of a given family, and corresponding to different energy eigenvalues. Here the role of the factorization method in the construction of such algebras is investigated. A general procedure for determining an so(2,2) or so(2,1) satellite algebra for all the Hamiltonians that admit a type E factorization is proposed. Such a procedure is based on the known relationship between type A and E factorizations, combined with an algebraization similar to that used in the construction of potential algebras. It is illustrated with the examples of the generalized Morse potential, the Rosen-Morse potential, the Kepler problem in a space of constant negative curvature, and, in each case, the conserved quantity is identified. It should be stressed that the method proposed is fairly general since the other factorization types may be considered as limiting cases of type A or E factorizations.Comment: 20 pages, LaTeX, no figure, to be published in J. Phys.
    corecore