9 research outputs found

    Structural and Functional Analysis of the Human Nuclear Xenobiotic Receptor PXR in Complex with RXRα

    Get PDF
    The human nuclear xenobiotic receptor PXR recognizes a range of potentially harmful drugs and endobiotic chemicals, but must complex with the nuclear receptor RXRα to control the expression of numerous drug metabolism genes. To date, the structural basis and functional consequences of this interaction have remained unclear. Here we present 2.8 Å resolution crystal structures of the heterodimeric complex formed between the ligand binding domains (LBDs) of human PXR and RXRα. These structures establish that PXR and RXRα form a heterotetramer unprecedented in the nuclear receptor family of ligand-regulated transcription factors. We further show that both PXR and RXRα bind to the transcriptional coregulator SRC-1 with higher affinity when they are part of the PXR-RXRα heterotetramer complex than they do when each LBD is examined alone. Furthermore, we purify the full-length forms of each receptor from recombinant bacterial expression systems, and characterize their interactions with a range of direct and everted repeat DNA elements. Taken together, these data advance our understanding of PXR, the master regulator of drug metabolism gene expression in humans, in its functional partnership with RXRα

    manuscript.doc

    No full text
    natalizumab slows brain atrophy and cognitive impairment in relapsing Multiple Sclerosi

    Natalizumab stabilizes physical, cognitive, MRI, and OCT markers of disease activity: A prospective, non-randomized pilot study

    No full text
    <div><p>Natalizumab is an effective therapy for multiple sclerosis (MS). Its effectiveness has been demonstrated in several clinical and imaging studies. The objective of this study was to further demonstrate the efficacy of natalizumab using a comprehensive battery of clinical and imaging markers in the same cohort of patients followed longitudinally, hence capturing the multi-faceted nature of the MS disease process. A prospective, open-label, pilot study of 20 MS patients treated with natalizumab was conducted. High resolution MRI, Symbol-Digit Modalities Test (SDMT), and Optical Coherence Tomography (OCT) scans were obtained at baseline, 48, and 96 weeks. 15 patients completed the study. Natalizumab treatment decreased Expanded Disability Status Scale score (EDSS) and no change in SDMT, Brain Parenchymal Fraction (BPF), or any of the OCT markers of retinal degeneration was observed. Thalamic and whole brain volume as assessed by Percentage Brain Volume Change (PBVC) showed continuous deterioration. Higher baseline T2 lesion load correlated with increased rate of PBVC at 96-weeks (r = 0.566, R<sup>2</sup> = 0.320, p = 0.035) and thalamic volume loss (r = -0.586, R<sup>2</sup> = 0.344, p = 0.027). Most patients, 93%, achieved no evidence of disease activity (NEDA) at 2 years, likely due to early disease duration and lower initial baseline lesion load. This study further demonstrates stabilization of clinical and imaging markers of disease activity during natalizumab treatment.</p></div

    Higher baseline T2 lesion volume correlates with thalamic volume loss over 96 weeks.

    No full text
    <p>Higher baseline T2 lesion volume correlates with thalamic volume loss over 96 weeks.</p

    TREND flow diagram describing the number of patients the trial screened, enrolled, allocated, completed and discontinued the intervention.

    No full text
    <p>TREND flow diagram describing the number of patients the trial screened, enrolled, allocated, completed and discontinued the intervention.</p

    Longitudinal clinical and imaging metrics over 96-week treatment period.

    No full text
    <p>Longitudinal clinical and imaging metrics over 96-week treatment period.</p

    Structural and Functional Analysis of the Human Nuclear Xenobiotic Receptor PXR in Complex with RXRα

    No full text
    The human nuclear xenobiotic receptor PXR recognizes a range of potentially harmful drugs and endobiotic chemicals, but must complex with the nuclear receptor RXRα to control the expression of numerous drug metabolism genes. To date, the structural basis and functional consequences of this interaction have remained unclear. Here we present 2.8 Å resolution crystal structures of the heterodimeric complex formed between the ligand binding domains (LBDs) of human PXR and RXRα. These structures establish that PXR and RXRα form a heterotetramer unprecedented in the nuclear receptor family of ligand-regulated transcription factors. We further show that both PXR and RXRα bind to the transcriptional coregulator SRC-1 with higher affinity when they are part of the PXR-RXRα heterotetramer complex than they do when each LBD is examined alone. Furthermore, we purify the full-length forms of each receptor from recombinant bacterial expression systems, and characterize their interactions with a range of direct and everted repeat DNA elements. Taken together, these data advance our understanding of PXR, the master regulator of drug metabolism gene expression in humans, in its functional partnership with RXRα
    corecore