70 research outputs found

    Back signaling by the Nrg-1 intracellular domain

    Get PDF
    Transmembrane isoforms of neuregulin-1 (Nrg-1), ligands for erbB receptors, include an extracellular domain with an EGF-like sequence and a highly conserved intracellular domain (ICD) of unknown function. In this paper, we demonstrate that transmembrane isoforms of Nrg-1 are bidirectional signaling molecules in neurons. The stimuli for Nrg-1 back signaling include binding of erbB receptor dimers to the extracellular domain of Nrg-1 and neuronal depolarization. These stimuli elicit proteolytic release and translocation of the ICD of Nrg-1 to the nucleus. Once in the nucleus, the Nrg-1 ICD represses expression of several regulators of apoptosis, resulting in decreased neuronal cell death in vitro. Thus, regulated proteolytic processing of Nrg-1 results in retrograde signaling that appears to mediate contact and activity-dependent survival of Nrg-1–expressing neurons

    Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    Get PDF
    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function

    A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles

    Get PDF
    Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET(+) mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells.; Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells

    Type III Nrg1 Back Signaling Enhances Functional TRPV1 along Sensory Axons Contributing to Basal and Inflammatory Thermal Pain Sensation

    Get PDF
    Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs) [1]. Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons [2]. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions [3]. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K [4], [5], [6], making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function

    Nicotine elicits prolonged calcium signaling along ventral hippocampal axons.

    Get PDF
    Presynaptic nicotinic acetylcholine receptors (nAChRs) have long been implicated in the modulation of CNS circuits. We previously reported that brief exposure to low concentrations of nicotine induced sustained potentiation of glutamatergic transmission at ventral hippocampal (vHipp)-striatal synapses. Here, we exploited nAChR subtype-selective antagonists and agonists and α7*nAChR knockout mutant mice (α7-/-) to elucidate the signaling mechanisms underlying nAChR-mediated modulation of synaptic transmission. Using a combination of micro-slices culture from WT and α7-/-mice, calcium imaging, and immuno-histochemical techniques, we found that nicotine elicits localized and oscillatory increases in intracellular Ca(2+) along vHipp axons that persists for up to 30 minutes. The sustained phase of the nicotine-induced Ca(2+) response was blocked by α-BgTx but not by DHβE and was mimicked by α7*nAChR agonists but not by non-α7*nAChR agonists. In vHipp slices from α7-/- mice, nicotine elicited only transient increases of axonal Ca(2+) signals and did not activate CaMKII. The sustained phase of the nicotine-induced Ca(2+) response required localized activation of CaMKII, phospholipase C, and IP3 receptor mediated Ca(2+)-induced Ca(2+) release (CICR). In conclusion, activation of presynaptic nAChRs by nicotine elicits Ca(2+) influx into the presynaptic axons, the sustained phase of the nicotine-induced Ca(2+) response requires that axonal α7*nAChR activate a downstream signaling network in the vHipp axons

    Parent-of-origin effects on schizophrenia-relevant behaviours of type III neuregulin 1 mutant mice

    No full text
    A robust, disease-relevant phenotype is paramount to the validity of genetic mouse models, which are an important tool in understanding complex diseases. Recent evidence from genome-wide association studies suggests the genetic contribution of parents to offspring is not equivalent. Despite this, few studies to date have examined the potential impact of parent genotype (i.e. origin of mutation) on the offspring of disease-relevant genetic mouse models. To elucidate the potential impact of the sex of the mutant parent on offspring phenotype, we characterized male and female offspring of an established schizophrenia mouse model, which had been generated using two different breeding schemes, in a range of disease-relevant behaviours. We compared heterozygous type III neuregulin 1 mutant (type III Nrg1+/−) and wild type-like control (WT) offspring from mutant father x WT mother pairings with offspring from mutant mother x WT father pairings. Offspring were tested in schizophrenia-relevant paradigms including the elevated plus maze (EPM), fear conditioning (FC), prepulse inhibition (PPI), social interaction (SI), and open field (OF). We found type III Nrg1+/− males from mutant fathers, but not mutant mothers, showed deficits in contextual fear-associated memory and exhibited increased social interaction, compared to their WT littermates. Type III Nrg1+/− females across breeding colonies only exhibited a subtle change to their acoustic startle response and sensorimotor gating. These results suggest a paternal-dependent transmission of genetically induced behavioural characteristics. Though the mechanisms governing this phenomenon are unclear, our results show that parental origin of mutation can alter the behavioural phenotype of genetic mouse models. Thus, researchers should carefully consider their breeding scheme when dealing with genetic mouse models of diseases such as schizophrenia

    Measuring Neighborhood Quality of Life: Placed-Based Sustainability Indicators in Freiburg, Germany

    No full text
    There has been a recent upswing of academic interest in the social dimensions of sustainable cities, especially the dynamics of Quality of Life (QoL), Environmental Equity, Ecosystem Services, Eco-Friendliness, Public Engagement, and Well-Being and Happiness Indicators. These factors are only now being evaluated as critical aspects of sustainable place-making and community development. This paper explores the social dimensions of neighborhood development in what some believe to be one of the most sustainable cities—Freiberg, Germany. We look at two neighborhoods that were specifically designed and built with sustainability principles and practices at their core. The authors surveyed residents of these neighborhoods to measure their levels of well-being, satisfaction with place, and other important QoL factors. Quantitative data was ascertained from residents using a survey questionnaire. The results show a high correlation between QoL factors as a function of place-making and sustainability practice
    • …
    corecore