23 research outputs found

    RIC-3 expression and splicing regulate nAChR functional expression

    Get PDF
    Effects of FL human RIC-3 vs. mouse FL on α7 nAChR functional expression in X. leavis oocytes. Results were normalized to currents recorded in oocytes expressing the respective receptors in the absence of RIC-3 in the same experiment. Each bar represents 10–20 oocytes from 2 to 3 independent X. laevis. The y-axis ordinates are on a log scale. * indicates a p value of less than 0.05; ** indicates a p value of less than 0.01. (PDF 714 kb

    Neuroinflammation Modulation via α7 Nicotinic Acetylcholine Receptor and Its Chaperone, RIC-3

    No full text
    Nicotinic acetylcholine receptors (nAChRs) are widely expressed in or on various cell types and have diverse functions. In immune cells nAChRs regulate proliferation, differentiation and cytokine release. Specifically, activation of the α7 nAChR reduces inflammation as part of the cholinergic anti-inflammatory pathway. Here we review numerous effects of α7 nAChR activation on immune cell function and differentiation. Further, we also describe evidence implicating this receptor and its chaperone RIC-3 in diseases of the central nervous system and in neuroinflammation, focusing on multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Deregulated neuroinflammation due to dysfunction of α7 nAChR provides one explanation for involvement of this receptor and of RIC-3 in neurodegenerative diseases. In this review, we also provide evidence implicating α7 nAChRs and RIC-3 in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) involving neuroinflammation. Besides, we will describe the therapeutic implications of activating the cholinergic anti-inflammatory pathway for diseases involving neuroinflammation

    Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization

    No full text
    Myasthenia gravis (MG) is an autoimmune disorder characterized by generalized muscle weakness due to neuromuscular junction (NMJ) dysfunction brought by acetylcholine receptor (AChR) antibodies in most cases. Although steroids and other immunosuppressants are effectively used for treatment of MG, these medications often cause severe side effects and a complete remission cannot be obtained in many cases. For pre-clinical evaluation of more effective and less toxic treatment methods for MG, the experimental autoimmune myasthenia gravis (EAMG) induced by Torpedo AChR immunization has become one of the standard animal models. Although numerous compounds have been recently proposed for MG mostly by using the active immunization EAMG model, only a few have been proven to be effective in MG patients. The variability in the experimental design, immunization methods and outcome measurements of pre-clinical EAMG studies make it difficult to interpret the published reports and assess the potential for application to MG patients. In an effort to standardize the active immunization EAMG model, we propose standard procedures for animal care conditions, sampling and randomization of mice, experimental design and outcome measures. Utilization of these standard procedures might improve the power of pre-clinical EAMG experiments and increase the chances for identifying promising novel treatment methods that can be effectively translated into clinical trials for MG. (C) 2015 Elsevier Inc. All rights reserved
    corecore