1,173 research outputs found

    Lattice Study of Anisotropic QED-3

    Full text link
    We present results from a Monte Carlo simulation of non-compact lattice QED in 3 dimensions on a 16316^3 lattice in which an explicit anisotropy between xx and yy hopping terms has been introduced into the action. This formulation is inspired by recent formulations of anisotropic QED3_3 as an effective theory of the non-superconducting portion of the cuprate phase diagram, with relativistic fermion degrees of freedom defined near the nodes of the gap function on the Fermi surface, and massless photon degrees of freedom reproducing the dynamics of the phase disorder of the superconducting order parameter. Using a parameter set corresponding to broken chiral symmetry in the isotropic limit, our results show that the renormalised anisotropy, defined in terms of the ratio of correlation lengths of gauge invariant bound states in the xx and yy directions, exceeds the explicit anisotropy κ\kappa introduced in the lattice action, implying in contrast to recent analytic results that anisotropy is a relevant deformation of QED3_3. There also appears to be a chiral symmetry restoring phase transition at κc4.5\kappa_c\simeq4.5, implying that the pseudogap phase persists down to T=0 in the cuprate phase diagram.Comment: 24 pages, 9 figures, 3 tables. This (the published version) has the following alterations: i) An expanded discussion of the empirical aspects of HT superconductivity, ii) An updated version of Figure 4, iii) The removal of the consistency check in section 3.3.1 for reasons of brevit

    Absence of an isotope effect in the magnetic resonance in high-TcT_c superconductors

    Full text link
    An inelastic neutron scattering experiment has been performed in the high-temperature superconductor YBa2Cu3O6.89\rm YBa_2Cu_3O_{6.89} to search for an oxygen-isotope shift of the well-known magnetic resonance mode at 41 meV. Contrary to a recent prediction (I. Eremin, {\it et al.}, Phys. Rev. B {\bf 69}, 094517 (2004)), a negligible shift (at best \leq +0.2 meV) of the resonance energy is observed upon oxygen isotope substitution (16^{16}O18\to^{18}O). This suggests a negligible spin-phonon interaction in the high-TcT_c cuprates at optimal doping.Comment: 3 figure

    A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8

    Get PDF
    We have performed susceptibility, thermopower, dc resistance and microwave measurements on RuSr2EuCu2O8. This compound has recently been shown to display the coexistence of both superconducting and magnetic order. We find clear evidence of changes in the dc and microwave resistance near the magnetic ordering temperature (132 K). The intergranular effects were separated from the intragranular effects by performing microwave measurements on a sintered ceramic sample as well as on a powder sample dispersed in an epoxy resin. We show that the data can be interpreted in terms of the normal-state resistivity being dominated by the CuO2 layers with exchange coupling to the Ru moments in the RuO2 layers. Furthermore, most of the normal-state semiconductor-like upturn in the microwave resistance is found to arise from intergranular transport. The data in the superconducting state can be consistently interpreted in terms of intergranular weak-links and an intragranular spontaneous vortex phase due to the ferromagnetic component of the magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys. Rev.

    The Doping Phase Diagram of Y1-xcaxba2(Cu1-yzny)3O7-d from Transport Measurements: Tracking the Pseudogap Below Tc (y = 0)

    Full text link
    The effects of planar hole concentration, p, on the resistivity, r(T), of sintered Y1-xCaxBa2(Cu1-yZny)3O7-d samples were investigated over a wide range of Ca, Zn, and oxygen contents. Zn was used to suppress superconductivity and this enabled us to extract the characteristic pseudogap temperature, T*(p), from r(T,p) data below Tco(p) [ = Tc (y = 0)]. We have also located the characteristic temperature, Tscf, marking the onset of significant superconducting fluctuations above Tc, from the analysis of r(T,H,p) and r(T,p) data. This enabled us to identify T*(p) near the optimum doping level where the values of T*(p) and Tscf(p) are very close and hard to distinguish. We again found that T*(p) depends only on the hole concentration p, and not on the level of disorder associated with Zn or Ca substitutions. We conclude that (i) T*(p) (and therefore, the pseudogap) persists below Tco(p) on the overdoped side and does not merge with the Tco(p) line and (ii) T*(p), and thus the pseudogap energy, extrapolates to zero at the doping p = 0.19 +/- 0.01. PACS numbers: 74.25.Dw, 74.25. 74.62.Dh, 74.72.-h Key words: Pseudoap, Superconducting fluctuationsComment: 14 pages (Text), 7 figure

    Anomalous peak in the superconducting condensate density of cuprate high T_{c} superconductors at a unique critical doping state

    Full text link
    The doping dependence of the superconducting condensate density, n_{s}^{o}, has been studied by muon-spin-rotation for Y_{0.8}Ca_{0.2}Ba_{2}(Cu_{1-z}Zn_{z})_{3}O_{7-\delta} and Tl_{0.5-y}Pb_{0.5+y}Sr_{2}Ca_{1-x}Y_{x}Cu_{2}O_{7}. We find that n_{s}^{o} exhibits a pronounced peak at a unique doping state in the slightly overdoped regime. Its position coincides with the critical doping state where the normal state pseudogap first appears depleting the electronic density of states. A surprising correlation between n_{s}^{o} and the condensation energy U_{o} is observed which suggests unconventional behavior even in the overdoped region.Comment: 10 pages, 3 figure
    corecore