79 research outputs found
High Entropy Rare Earth Oxide (HERO) Environmental Barrier Coatings for Refractory Metal Alloys
Please click Additional Files below to see the full abstract
Carbon Free Boston: Technical Summary
Part of a series of reports that includes:
Carbon Free Boston: Summary Report;
Carbon Free Boston: Social Equity Report;
Carbon Free Boston: Buildings Technical Report;
Carbon Free Boston: Transportation Technical Report;
Carbon Free Boston: Waste Technical Report;
Carbon Free Boston: Energy Technical Report;
Carbon Free Boston: Offsets Technical Report;
Available at http://sites.bu.edu/cfb/OVERVIEW:
This technical summary is intended to argument the rest of the Carbon Free Boston technical reports
that seek to achieve this goal of deep mitigation. This document provides below: a rationale for carbon
neutrality, a high level description of Carbon Free Boston’s analytical approach; a summary of crosssector strategies; a high level analysis of air quality impacts; and, a brief analysis of off-road and street
light emissions.Published versio
AI-Enabled Lung Cancer Prognosis
Lung cancer is the primary cause of cancer-related mortality, claiming
approximately 1.79 million lives globally in 2020, with an estimated 2.21
million new cases diagnosed within the same period. Among these, Non-Small Cell
Lung Cancer (NSCLC) is the predominant subtype, characterized by a notably
bleak prognosis and low overall survival rate of approximately 25% over five
years across all disease stages. However, survival outcomes vary considerably
based on the stage at diagnosis and the therapeutic interventions administered.
Recent advancements in artificial intelligence (AI) have revolutionized the
landscape of lung cancer prognosis. AI-driven methodologies, including machine
learning and deep learning algorithms, have shown promise in enhancing survival
prediction accuracy by efficiently analyzing complex multi-omics data and
integrating diverse clinical variables. By leveraging AI techniques, clinicians
can harness comprehensive prognostic insights to tailor personalized treatment
strategies, ultimately improving patient outcomes in NSCLC. Overviewing
AI-driven data processing can significantly help bolster the understanding and
provide better directions for using such systems.Comment: This is the author's version of a book chapter entitled: "Cancer
Research: An Interdisciplinary Approach", Springe
Thermochemical stability of high entropy rare earth oxide (HERO) coatings for refractory alloys
Please click Additional Files below to see the full abstract
Staggered Currents in the Vortex Core
We study the electronic structure of the vortex core in the cuprates using
the U(1) slave-boson mean-field wavefunctions and their Gutzwiller projection.
We conclude that there exists local orbital antiferromagnetic order in the core
near optimal doping. We compare the results with that of BCS theory and analyze
the spatial dependence of the local tunneling density of states.Comment: 4 pages, 3 figure
Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on Gd doped single crystals
Zero-field electron spin resonance (ESR) of dilute Gd ions substituted for Y
in the cuprate superconductor YBaCuO is used as a novel
technique for measuring the absolute value of the low temperature magnetic
penetration depth . The Gd ESR spectrum of samples with
substitution was obtained with a broadband microwave technique
that measures power absorption bolometrically from 0.5 GHz to 21 GHz. This ESR
spectrum is determined by the crystal field that lifts the level degeneracy of
the spin 7/2 Gd ion and details of this spectrum provide information
concerning oxygen ordering in the samples. The magnetic penetration depth is
obtained by relating the number of Gd ions exposed to the microwave magnetic
field to the frequency-integrated intensity of the observed ESR transitions.
This technique has allowed us to determine precise values of for
screening currents flowing in the three crystallographic orientations (, and ) in samples of GdYBaCuO of three different oxygen contents ( K), ( K) and
( K). The in-plane values are found to depart substantially from the
widely reported relation .Comment: 14 pages, 12 figures; version to appear in PR
The onset of the vortex-like Nernst signal above Tc in La_{2-x}Sr_xCuO_4 and Bi_2Sr_{2-y}La_yCuO_6
The diffusion of vortices down a thermal gradient produces a Josephson signal
which is detected as the vortex Nernst effect. In a recent report, Xu et al.,
Nature 406, 486 (2000), an enhanced Nernst signal identified with vortex-like
excitations was observed in a series of La_{2-x}Sr_xCuO_4 (LSCO) crystals at
temperatures 50-100 K above T_c. To pin down the onset temperature T_{\nu} of
the vortex-like signal in the lightly doped regime (0.03 < x < 0.07), we have
re-analyzed in detail the carrier contribution to the Nernst signal. By
supplementing new Nernst measurements with thermopower and Hall-angle data, we
isolate the off-diagonal Peltier conductivity \alpha_{xy} and show that its
profile provides an objective determination of T_{\nu}. With the new results,
we revise the phase diagram for the fluctuation regime in LSCO to accomodate
the lightly doped regime. In the cuprate Bi_2Sr_{2-y}La_yCuO_6, we find that
the carrier contribution is virtually negligible for y in the range 0.4-0.6.
The evidence for an extended temperature interval with vortex-like excitations
is even stronger in this system. Finally, we discuss how T_{\nu} relates to the
pseudogap temperature T* and the implications of strong fluctuations between
the pseudogap state and the d-wave superconducting state.Comment: 10 pages, 10 figure
Polychromatic guide star: feasibility study
International audienceAdaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. It turns out that the sky coverage is disastrously low in particular in the visible wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereinafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return-of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because $APEX 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial sky coverage for the tilt. The only one providing us with a full sky coverage is the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D; program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play. We finally shortly described the effort in Europe to develop the LGS
Microwave Conductivity due to Scattering from Extended Linear Defects in d-Wave Superconductors
Recent microwave conductivity measurements of detwinned, high-purity,
slightly overdoped YBaCuO crystals reveal a linear
temperature dependence and a near-Drude lineshape for temperatures between 1
and 20 K and frequencies ranging from 1 to 75 GHz. Prior theoretical work has
shown that simple models of scattering by point defects (impurities) in d-wave
superconductors are inconsistent with these results. It has therefore been
suggested that scattering by extended defects such as twin boundary remnants,
left over from the detwinning process, may also be important. We calculate the
self-energy and microwave conductivity in the self-consistent Born
approximation (including vertex corrections) for a d-wave superconductor in the
presence of scattering from extended linear defects. We find that in the
experimentally relevant limit (), the
resulting microwave conductivity has a linear temperature dependence and a
near-Drude frequency dependence that agrees well with experiment.Comment: 13 pages, 7 figure
Polychromatic guide star: feasibility study
International audienceAdaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. It turns out that the sky coverage is disastrously low in particular in the visible wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereinafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return-of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because $APEX 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial sky coverage for the tilt. The only one providing us with a full sky coverage is the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D; program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play. We finally shortly described the effort in Europe to develop the LGS
- …