13 research outputs found

    Visual contrast sensitivity is associated with the presence of cerebral amyloid and tau deposition

    Get PDF
    Visual deficits are common in neurodegenerative diseases including Alzheimer’s disease. We sought to determine the association between visual contrast sensitivity and neuroimaging measures of Alzheimer’s disease-related pathophysiology, including cerebral amyloid and tau deposition and neurodegeneration. A total of 74 participants (7 Alzheimer’s disease, 16 mild cognitive impairment, 20 subjective cognitive decline, 31 cognitively normal older adults) underwent the frequency doubling technology 24-2 examination, a structural MRI scan and amyloid PET imaging for the assessment of visual contrast sensitivity. Of these participants, 46 participants (2 Alzheimer’s disease, 9 mild cognitive impairment, 12 subjective cognitive decline, 23 cognitively normal older adults) also underwent tau PET imaging with [18F]flortaucipir. The relationships between visual contrast sensitivity and cerebral amyloid and tau, as well as neurodegeneration, were assessed using partial Pearson correlations, covaried for age, sex and race and ethnicity. Voxel-wise associations were also evaluated for amyloid and tau. The ability of visual contrast sensitivity to predict amyloid and tau positivity were assessed using forward conditional logistic regression and receiver operating curve analysis. All analyses first were done in the full sample and then in the non-demented at-risk individuals (subjective cognitive decline and mild cognitive impairment) only. Significant associations between visual contrast sensitivity and regional amyloid and tau deposition were observed across the full sample and within subjective cognitive decline and mild cognitive impairment only. Voxel-wise analysis demonstrated strong associations of visual contrast sensitivity with amyloid and tau, primarily in temporal, parietal and occipital brain regions. Finally, visual contrast sensitivity accurately predicted amyloid and tau positivity. Alterations in visual contrast sensitivity were related to cerebral deposition of amyloid and tau, suggesting that this measure may be a good biomarker for detecting Alzheimer’s disease-related pathophysiology. Future studies in larger patient samples are needed, but these findings support the power of these measures of visual contrast sensitivity as a potential novel, inexpensive and easy-to-administer biomarker for Alzheimer’s disease-related pathology in older adults at risk for cognitive decline

    Olfactory identification in subjective cognitive decline and mild cognitive impairment: Association with tau but not amyloid positron emission tomography

    Get PDF
    Introduction We investigated the association between olfactory identification and Alzheimer's disease biomarkers, including amyloid, tau, and neurodegeneration. Methods Thirty-four older adults, including 19 cognitively normal (CN), 10 subjective cognitive decline (SCD), and 5 mild cognitive impairment, underwent amyloid positron emission tomography, magnetic resonance imaging, and the University of Pennsylvania Smell Identification Test (UPSIT). Twenty-six also underwent tau positron emission tomography. Associations between the UPSIT and regionally sampled amyloid, tau, and temporal atrophy were evaluated. Voxel-wise regression models were also utilized. Analyses were conducted with the full sample and only CN/SCD. Results Lower UPSIT scores were associated with increased temporal and parietal tau burden in regional and voxel-wise analyses in the full sample and in CN and SCD only. Temporal lobe atrophy was associated with lower UPSIT score. Amyloid was not associated with the UPSIT. Discussion Impairment on the UPSIT may be a good marker for tau and neurodegeneration in preclinical or prodromal Alzheimer's disease

    [(11)C]PiB PET in Gerstmann-Sträussler-Scheinker disease

    Get PDF
    Gerstmann-Sträussler-Scheinker Disease (GSS) is a familial neurodegenerative disorder characterized clinically by ataxia, parkinsonism, and dementia, and neuropathologically by deposition of diffuse and amyloid plaques composed of prion protein (PrP). The purpose of this study was to evaluate if [(11)C]Pittsburgh Compound B (PiB) positron emission tomography (PET) is capable of detecting PrP-amyloid in PRNP gene carriers. Six individuals at risk for GSS and eight controls underwent [(11)C]PiB PET scans using standard methods. Approximately one year after the initial scan, each of the three asymptomatic carriers (two with PRNP P102L mutation, one with PRNP F198S mutation) underwent a second [(11)C]PiB PET scan. Three P102L carriers, one F198S carrier, and one non-carrier of the F198S mutation were cognitively normal, while one F198S carrier was cognitively impaired during the course of this study. No [(11)C]PiB uptake was observed in any subject at baseline or at follow-up. Neuropathologic study of the symptomatic individual revealed PrP-immunopositive plaques and tau-immunopositive neurofibrillary tangles in cerebral cortex, subcortical nuclei, and brainstem. PrP deposits were also numerous in the cerebellar cortex. This is the first study to investigate the ability of [(11)C]PiB PET to bind to PrP-amyloid in GSS F198S subjects. This finding suggests that [(11)C]PiB PET is not suitable for in vivo assessment of PrP-amyloid plaques in patients with GSS

    Detection of tau in Gerstmann-Sträussler-Scheinker disease (PRNP F198S) by [18F]Flortaucipir PET

    Get PDF
    Abstract This study aimed to determine the pattern of [18F]flortaucipir uptake in individuals affected by Gerstmann-Sträussler-Scheinker disease (GSS) associated with the PRNP F198S mutation. The aims were to: 1) determine the pattern of [18F]flortaucipir uptake in two GSS patients; 2) compare tau distribution by [18F]flortaucipir PET imaging among three groups: two GSS patients, two early onset Alzheimer’s disease patients (EOAD), two cognitively normal older adults (CN); 3) validate the PET imaging by comparing the pattern of [18F]flortaucipir uptake, in vivo, with that of tau neuropathology, post-mortem. Scans were processed to generate standardized uptake value ratio (SUVR) images. Regional [18F]flortaucipir SUVR was extracted and compared between GSS patients, EOADs, and CNs. Neuropathology and tau immunohistochemistry were carried out post-mortem on a GSS patient who died 9 months after the [18F]flortaucipir scan. The GSS patients were at different stages of disease progression. Patient A was mildly to moderately affected, suffering from cognitive, psychiatric, and ataxia symptoms. Patient B was moderately to severely affected, suffering from ataxia and parkinsonism accompanied by psychiatric and cognitive symptoms. The [18F]flortaucipir scans showed uptake in frontal, cingulate, and insular cortices, as well as in the striatum and thalamus. Uptake was greater in Patient B than in Patient A. Both GSS patients showed greater uptake in the striatum and thalamus than the EOADs and greater uptake in all evaluated regions than the CNs. Thioflavin S fluorescence and immunohistochemistry revealed that the anatomical distribution of tau pathology is consistent with that of [18F]flortaucipir uptake. In GSS patients, the neuroanatomical localization of pathologic tau, as detected by [18F]flortaucipir, suggests correlation with the psychiatric, motor, and cognitive symptoms. The topography of uptake in PRNP F198S GSS is strikingly different from that seen in AD. Further studies of the sensitivity, specificity, and anatomical patterns of tau PET in diseases with tau pathology are warranted

    Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults.

    Get PDF
    ImportanceThe use of anticholinergic (AC) medication is linked to cognitive impairment and an increased risk of dementia. To our knowledge, this is the first study to investigate the association between AC medication use and neuroimaging biomarkers of brain metabolism and atrophy as a proxy for understanding the underlying biology of the clinical effects of AC medications.ObjectiveTo assess the association between AC medication use and cognition, glucose metabolism, and brain atrophy in cognitively normal older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Indiana Memory and Aging Study (IMAS).Design, setting, and participantsThe ADNI and IMAS are longitudinal studies with cognitive, neuroimaging, and other data collected at regular intervals in clinical and academic research settings. For the participants in the ADNI, visits are repeated 3, 6, and 12 months after the baseline visit and then annually. For the participants in the IMAS, visits are repeated every 18 months after the baseline visit (402 cognitively normal older adults in the ADNI and 49 cognitively normal older adults in the IMAS were included in the present analysis). Participants were either taking (hereafter referred to as the AC+ participants [52 from the ADNI and 8 from the IMAS]) or not taking (hereafter referred to as the AC- participants [350 from the ADNI and 41 from the IMAS]) at least 1 medication with medium or high AC activity. Data analysis for this study was performed in November 2015.Main outcomes and measuresCognitive scores, mean fludeoxyglucose F 18 standardized uptake value ratio (participants from the ADNI only), and brain atrophy measures from structural magnetic resonance imaging were compared between AC+ participants and AC- participants after adjusting for potential confounders. The total AC burden score was calculated and was related to target measures. The association of AC use and longitudinal clinical decline (mean [SD] follow-up period, 32.1 [24.7] months [range, 6-108 months]) was examined using Cox regression.ResultsThe 52 AC+ participants (mean [SD] age, 73.3 [6.6] years) from the ADNI showed lower mean scores on Weschler Memory Scale-Revised Logical Memory Immediate Recall (raw mean scores: 13.27 for AC+ participants and 14.16 for AC- participants; P = .04) and the Trail Making Test Part B (raw mean scores: 97.85 seconds for AC+ participants and 82.61 seconds for AC- participants; P = .04) and a lower executive function composite score (raw mean scores: 0.58 for AC+ participants and 0.78 for AC- participants; P = .04) than the 350 AC- participants (mean [SD] age, 73.3 [5.8] years) from the ADNI. Reduced total cortical volume and temporal lobe cortical thickness and greater lateral ventricle and inferior lateral ventricle volumes were seen in the AC+ participants relative to the AC- participants.Conclusions and relevanceThe use of AC medication was associated with increased brain atrophy and dysfunction and clinical decline. Thus, use of AC medication among older adults should likely be discouraged if alternative therapies are available

    GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP.

    No full text
    In a genome-wide study, Ramanan et al. discover an association between the microglial activation gene IL1RAP and higher rates of amyloid plaque accumulation as measured by PET in prodromal Alzheimer’s disease. Activated microglia may be crucial in amyloid clearance, and targeting the interleukin-1/IL1RAP pathway may be a potential therapeutic approach

    Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults

    No full text
    IMPORTANCE The use of anticholinergic (AC) medication is linked to cognitive impairment and an increased risk of dementia. To our knowledge, this is the first study to investigate the association between AC medication use and neuroimaging biomarkers of brain metabolism and atrophy as a proxy for understanding the underlying biology of the clinical effects of AC medications. OBJECTIVE To assess the association between AC medication use and cognition, glucose metabolism, and brain atrophy in cognitively normal older adults from the Alzheimer\u27s Disease Neuroimaging Initiative (ADNI) and the Indiana Memory and Aging Study (IMAS). DESIGN, SETTING, AND PARTICIPANTS The ADNI and IMAS are longitudinal studies with cognitive, neuroimaging, and other data collected at regular intervals in clinical and academic research settings. For the participants in the ADNI, visits are repeated 3, 6, and 12 months after the baseline visit and then annually. For the participants in the IMAS, visits are repeated every 18 months after the baseline visit (402 cognitively normal older adults in the ADNI and 49 cognitively normal older adults in the IMAS were included in the present analysis). Participants were either taking (hereafter referred to as the AC+ participants [52 from the ADNI and 8 from the IMAS]) or not taking (hereafter referred to as the AC- participants [350 from the ADNI and 41 from the IMAS]) at least 1 medication with medium or high AC activity. Data analysis for this study was performed in November 2015. MAIN OUTCOMES AND MEASURES Cognitive scores, mean fludeoxyglucose F 18 standardized uptake value ratio (participants from the ADNI only), and brain atrophy measures from structural magnetic resonance imaging were compared between AC+ participants and AC- participants after adjusting for potential confounders. The total AC burden score was calculated and was related to target measures. The association of AC use and longitudinal clinical decline (mean [SD] follow-up period, 32.1 [24.7] months [range, 6-108 months]) was examined using Cox regression. RESULTS The 52 AC+ participants (mean [SD] age, 73.3 [6.6] years) from the ADNI showed lower mean scores onWeschler Memory Scale-Revised Logical Memory Immediate Recall (raw mean scores: 13.27 for AC+ participants and 14.16 for AC- participants; P = .04) and the Trail Making Test Part B (raw mean scores: 97.85 seconds for AC+ participants and 82.61 seconds for AC- participants; P = .04) and a lower executive function composite score (raw mean scores: 0.58 for AC+ participants and 0.78 for AC- participants; P = .04) than the 350 AC- participants (mean [SD] age, 73.3 [5.8] years) from the ADNI. Reduced total cortical volume and temporal lobe cortical thickness and greater lateral ventricle and inferior lateral ventricle volumes were seen in the AC+ participants relative to the AC- participants. CONCLUSIONS AND RELEVANCE The use of AC medication was associated with increased brain atrophy and dysfunction and clinical decline. Thus, use of AC medication among older adults should likely be discouraged if alternative therapies are available
    corecore