17 research outputs found

    Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to ets binding sites

    Get PDF
    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction

    Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis

    Get PDF
    Inflammation is a necessary albeit insufficient component of tumorigenesis in some cancers. Infectious agents directly implicated in tumorigenesis have been shown to induce inflammation. This process involves both the innate and adaptive components of the immune system which contribute to tumor angiogenesis, tumor tolerance and metastatic properties of neoplasms. Recently, heat-shock proteins have been identified as mediators of this inflammatory process and thus may provide a link between infection-mediated inflammation and subsequent cancer development. In this review, the role of heat-shock proteins in infection-induced inflammation and carcinogenesis will be discussed

    No evidence of systemic inflammation in symptomatic patients with femoroacetabular impingement

    No full text
    Femoroacetabular impingement (FAI) is a common cause of hip pain and represents a major cause of early osteoarthritis. The role of systemic inflammation in pre-arthritic hip conditions remains largely unknown and uninvestigated. Serum free light chains (sFLCs) are inflammatory markers produced by B cells. This study aimed to determine whether there was evidence of systemic inflammation in patients with FAI, defined by sFLCs, and whether this correlated with markers of disease severity. Participants for this study were recruited from a single centre (Nuffield Orthopaedic Centre, Oxford) and were taking part in the Femoroacetabular Impingement Trial. The cohort comprised 115 individuals (38 male, 77 female, mean age 37 years): 57 individuals received surgical intervention and 58 received physiotherapy. All individuals provided patient reported outcome measures and serum samples at baseline and follow up 8-months post-randomisation. sFLC concentrations were measured in serum samples by immunoturbidimetry. At baseline, for all individuals, mean polyclonal sFLC concentrations were 30.36 mg/L (SD 9.23). At follow-up, the mean polyclonal sFLC concentrations were 31.68 mg/L (SD 9.61) in the surgical intervention cohort, and 29.48 mg/L (SD 7.85) in the physiotherapy intervention cohort. There was no significant correlation between sFLC concentrations and any of the patient reported outcome measures, or radiographic measures: average or maximum alpha angle, or centre edge angle. In conclusion, in patients with symptomatic FAI there was no systemic inflammation, as defined by sFLC concentrations, and no correlation between sFLC concentrations and measures of disease severity. The lack of inflammation suggests FAI is a mechanical phenomenon. This article is protected by copyright. All rights reserved

    Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies

    Full text link
    Cancer cells in hypoxic areas of solid tumors are to a large extent protected against the action of radiation as well as many chemotherapeutic drugs. There are, however, two different aspects of the problem caused by tumor hypoxia when cancer therapy is concerned: One is due to the chemical reactions that molecular oxygen enters intoin therapeutically targeted cells. This results in a direct chemical protection against therapy by the hypoxic microenvironment which has little to do with cellular biological regulatory processes. This part of the protective effect of hypoxia has been known for more than half a century and has been studied extensively. However, in recent years more focus has been put into the other aspect of hypoxia, namely the effect of this microenvironmental condition on selecting cells with certain genetical pre-requisites that are negative with respect to patient prognosis. There are adaptive mechanisms, where hypoxia induces regulatory cascades in cells resulting in a changed metabolism or changes in extra cellular signalling. These processes may lead to changes in cellular intrinsic sensitivity to treatment irrespective of oxygenation and furthermore, may also have consequences for tissue organization. Thus, the adaptive mechanisms induced by hypoxia itself may have a selective effect on cells with a fine-tuned protection against damage and stress of many kinds. It therefore could be that the adaptive mechanisms may be taken advantage of for new tumor labelling/imaging and treatment strategies. One of the Achilles’ heels of hypoxia research has always been exact measurements of tissue oxygenation as well as control of oxygenation in biological tumor models. Thus, development of technology that can ease this control is vital in order to study mechanisms and perform drug development under relevant conditions. An integrated EU Framework project 2004-2009, termed Euroxy, demonstrates several pathways involved in transcription and translation control of the hypoxic cell phenotype and evidence of cross talk with responses to pH and redox changes. The carbon anhydrase isoenzyme CA IX was selected for further studies due to its expression on the surface of many types of hypoxic tumors. The effort has lead to marketable culture flaks with sensors and incubation equipment and the synthesis of new drug candidates against new molecular targets. New labelling/imaging methods for cancer diagnosing and imaging of hypoxic cancer tissue now are being tested in xeno-graft models and also are in early clinical testing while new potential anticancer drugs are undergoing tests using xenografted tumor cancers. The present paper describes the above results in individual consortium partner presentations
    corecore