76 research outputs found

    Anaesthesiological strategies in elective craniotomy: randomized, equivalence, open trial – The NeuroMorfeo trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies have attempted to determine the <it>"best" </it>anaesthetic technique for neurosurgical procedures in patients without intracranial hypertension. So far, no study comparing intravenous (IA) with volatile-based neuroanaesthesia (VA) has been able to demonstrate major outcome differences nor a superiority of one of the two strategies in patients undergoing elective supratentorial neurosurgery. Therefore, current practice varies and includes the use of either volatile or intravenous anaesthetics in addition to narcotics. Actually the choice of the anaestesiological strategy depends only on the anaesthetists' preferences or institutional policies.</p> <p>This trial, named NeuroMorfeo, aims to assess the equivalence between volatile and intravenous anaesthetics for neurosurgical procedures.</p> <p>Methods/Design</p> <p>NeuroMorfeo is a multicenter, randomized, open label, controlled trial, based on an equivalence design. Patients aged between 18 and 75 years, scheduled for elective craniotomy for supratentorial lesion without signs of intracranial hypertension, in good physical state (ASA I-III) and Glasgow Coma Scale (GCS) equal to 15, are randomly assigned to one of three anaesthesiological strategies (two VA arms, sevoflurane + fentanyl or sevoflurane + remifentanil, and one IA, propofol + remifentanil). The equivalence between intravenous and volatile-based neuroanaesthesia will be evaluated by comparing the intervals required to reach, after anaesthesia discontinuation, a modified Aldrete score ≥ 9 (primary end-point). Two statistical comparisons have been planned:</p> <p>1) sevoflurane + fentanyl vs. propofol + remifentanil;</p> <p>2) sevoflurane + remifentanil vs. propofol + remifentanil.</p> <p>Secondary end-points include: an assessment of neurovegetative stress based on (a) measurement of urinary catecholamines and plasma and urinary cortisol and (b) estimate of sympathetic/parasympathetic balance by power spectrum analyses of electrocardiographic tracings recorded during anaesthesia; intraoperative adverse events; evaluation of surgical field; postoperative adverse events; patient's satisfaction and analysis of costs.</p> <p>411 patients will be recruited in 14 Italian centers during an 18-month period.</p> <p>Discussion</p> <p>We presented the development phase of this anaesthesiological on-going trial. The recruitment started December 4<sup>th</sup>, 2007 and up to 4<sup>th</sup>, December 2008, 314 patients have been enrolled.</p

    Sustainability in the face of institutional adversity : market turbulence, network embeddedness, and innovative orientation

    Get PDF

    Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri

    No full text
    Arabidopsis halleri ssp. halleri (accession Langelsheim) is a naturally selected zinc (Zn)- and cadmium-tolerant Zn hyperaccumulator. This plant differs strikingly from its close relative A. thaliana by accumulating Zn specifically in above-ground tissues. A. thaliana GeneChips were used in order to identify, on a transcriptome-wide scale, genes with a potential involvement in cellular metal uptake or detoxification in the shoots of A. halleri. Compared to A. thaliana, transcript abundance of several genes was found and confirmed to be substantially higher in A. halleri after 4 days of exposure to low as well as high Zn concentrations in the hydroponic culture medium. The identified candidate genes encode proteins closely related to the following A. thaliana proteins: AtZIP6, a putative cellular Zn uptake system and member of the zinc-regulated transporter (ZRT)-iron regulated transporter (IRT)-like protein (ZIP)-family of metal transporters, the putative P-type metal ATPase AtHMA3, the cation diffusion facilitator ZAT/AtCDF1, and the nicotianamine synthase AtNAS3. Heterologous expression in mutant strains of the yeast Saccharomyces cerevisiae suggested that AhHMA3, AhCDF1-3, and AhNAS3 can function in cellular Zn detoxification. Our data indicate that, at the transcript level, the Zn tolerance strategy of A. halleri involves high constitutive expression of metal homeostasis genes in the shoots to accommodate higher basal levels of Zn accumulation, and possibly to prepare for sudden increases in Zn influx into shoot cells. Furthermore, profiling of metal homeostasis gene transcripts in shoot and root tissues by real-time RT-PCR indicated that A. halleri and A. thaliana respond differently to changes in plant Zn status. [References: 83] 8

    Phylogenetic relationships within cation transporter families of Arabidopsis.

    No full text
    Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth, nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode membrane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In addition, several hundred putative transporters have not yet been assigned to families. In this paper, we have analyzed the phylogenetic relationships of over 150 cation transport proteins. This analysis has focused on cation transporter gene families for which initial characterizations have been achieved for individual members, including potassium transporters and channels, sodium transporters, calcium antiporters, cyclic nucleotide-gated channels, cation diffusion facilitator proteins, natural resistance-associated macrophage proteins (NRAMP), and Zn-regulated transporter Fe-regulated transporter-like proteins. Phylogenetic trees of each family define the evolutionary relationships of the members to each other. These families contain numerous members, indicating diverse functions in vivo. Closely related isoforms and separate subfamilies exist within many of these gene families, indicating possible redundancies and specialized functions. To facilitate their further study, the PlantsT database (http://plantst.sdsc.edu) has been created that includes alignments of the analyzed cation transporters and their chromosomal locations

    Phylogenetic Relationships within Cation Transporter Families of Arabidopsis

    Get PDF
    Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth, nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode membrane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In addition, several hundred putative transporters have not yet been assigned to families. In this paper, we have analyzed the phylogenetic relationships of over 150 cation transport proteins. This analysis has focused on cation transporter gene families for which initial characterizations have been achieved for individual members, including potassium transporters and channels, sodium transporters, calcium antiporters, cyclic nucleotide-gated channels, cation diffusion facilitator proteins, natural resistance-associated macrophage proteins (NRAMP), and Zn-regulated transporter Fe-regulated transporter-like proteins. Phylogenetic trees of each family define the evolutionary relationships of the members to each other. These families contain numerous members, indicating diverse functions in vivo. Closely related isoforms and separate subfamilies exist within many of these gene families, indicating possible redundancies and specialized functions. To facilitate their further study, the PlantsT database (http://plantst.sdsc.edu) has been created that includes alignments of the analyzed cation transporters and their chromosomal locations
    • …
    corecore