84 research outputs found
Raman spectroscopic analysis to identify chemical changes associated with different subtypes of breast cancer tissue samples
Breast cancer incidence rates are increasing in women worldwide with the highest rates reported in developed countries. A combination of screening approaches, Immuno-histopathology and gene profiling analyses are currently used for diagnosis and typing but have their own limitations in understanding disease and its subtypes. Raman spectroscopy (RS) has attained great attention from biomedical researchers due to its non-invasive and non-destructive detection approach. Chemometrics is one of the powerful tools used in spectroscopic research to enhance its sensitivity.
RS was used to characterise and differentiate two breast cancer and one normal breast cell lines (MDA-MB-436, MCF-7 and MCF-10A) and spectra of the cell lines have revealed basic differences in the concentration of biochemical compounds such as lipids, nucleic acids and proteins Raman peaks were found to differ in intensity and principal component analysis (PCA) was able to identify variations that lead to accurate and reliable separation of the three cell lines. Linear discriminant analysis (LDA) model of three cell lines was predicted with 100% sensitivity and 91% specificity.
RS studies were extended from single cells to multiple cell spheroids. Human breast cancer cell lines (T-47D) were grown as spheroids and a combination of RS and Cluster analysis were employed to understand biochemical fingerprint and differentiation of normal proliferating, hypoxic and necrotic regions of spheroids. These variations may be useful in identifying new spectral markers and further understanding of cancer metabolism.
Finally, Human breast biopsies on Tissue microarray (TMA) slide were analysed using RS and Chemometrics approaches. Biopsies were classified as luminal A, luminal B, HER2 and triple negative subtypes to understand chemical changes associated with breast cancer subtypes. Supervised and unsupervised algorithms were applied on biopsy data to explore intra and inter dataset biochemical changes associated with lipids, collagen and nucleic acid content.
In summary, RS has offered great potential understanding breast cancer from cell line level to multicellular spheroid to higher architecture of tissue. This study has explored new area to understand biochemical fingerprint of breast biopsies, which is complementary to current trends of molecular profiling and immuno histopathological approaches
The Internet of Things as Smart City Enabler:The Cases of Palo Alto, Nice and Stockholm
Part 5: Smart Cities and Smart HomesInternational audienceDue to rapid urbanization, city populations are rapidly increasing all over the world creating new problems and challenges. Solving some of these problems requires innovative approaches; one increasingly popular approach is to transform cities to Smart Cities. Smart Cities implement innovative approaches based on IoT technologies and convert many services to digital services. These services are implemented within the different components of a Smart City, helping city administrators to improve the life of the citizens, addressing different service, security and administrative challenges. The objective of this paper is to explore and determine how three well-known cities - Nice, Palo Alto and Stockholm - implemented the Smart City concept. The study indicates that a successful implementation of a Smart City model requires addressing a number of critical challenges: citizen involvement, business collaboration and strong leadership prove to be key success factors in the Smart City development process
Optimized cross-layer forward error correction coding for H.264 AVC video transmission over wireless channels
Forward error correction (FEC) codes that can provide unequal error protection (UEP) have been used recently for video transmission over wireless channels. These video transmission schemes may also benefit from the use of FEC codes both at the application layer (AL) and the physical layer (PL). However, the interaction and optimal setup of UEP FEC codes at the AL and the PL have not been previously investigated. In this paper, we study the cross-layer design of FEC codes at both layers for H.264 video transmission over wireless channels. In our scheme, UEP Luby transform codes are employed at the AL and rate-compatible punctured convolutional codes at the PL. In the proposed scheme, video slices are first prioritized based on their contribution to video quality. Next, we investigate the four combinations of cross-layer FEC schemes at both layers and concurrently optimize their parameters to minimize the video distortion and maximize the peak signal-to-noise ratio. We evaluate the performance of these schemes on four test H.264 video streams and show the superiority of optimized cross-layer FEC design.Peer reviewedElectrical and Computer Engineerin
Raman Spectroscopy and Regenerative Medicine: A Review
The field of regenerative medicine spans a wide area of the biomedical landscape—from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool
Bioactive Composite for Orbital Floor Repair and Regeneration
In the maxillofacial area, specifically the orbital floor, injuries can cause bone deformities in the head and face that are difficult to repair or regenerate. Treatment methodologies include use of polymers, metal, ceramics on their own and in combinations mainly for repair purposes, but little attention has been paid to identify suitable materials for orbital floor regeneration. Polyurethane (PU) and hydroxyapatite (HA) micro- or nano- sized with different percentages (25%, 40% & 60%) were used to fabricate bioactive tissue engineering (TE) scaffolds using solvent casting and particulate leaching methods. Mechanical and physical characterisation of TE scaffolds was investigated by tensile tests and SEM respectively. Chemical and structural properties of PU and PU/HA scaffolds were evaluated by infrared (IR) spectroscopy and Surface properties of the bioactive scaffold were analysed using attenuated total reflectance (ATR) sampling accessory coupled with IR. Cell viability, collagen formed, VEGF protein amount and vascularisation of bioactive TE scaffold were studied. IR characterisation confirmed the integration of HA in composite scaffolds, while ATR confirmed the significant amount of HA present at the top surface of the scaffold, which was a primary objective. The SEM images confirmed the pores’ interconnectivity. Increasing the content of HA up to 40% led to an improvement in mechanical properties, and the incorporation of nano-HA was more promising than that of micro-HA. Cell viability assays (using MG63) confirmed biocompatibility and CAM assays confirmed vascularization, demonstrating that HA enhances vascularization. These properties make the resulting biomaterials very useful for orbital floor repair and regeneration
- …