1,133 research outputs found
Electronic structure of and Quantum size effect in III-V and II-VI semiconducting nanocrystals using a realistic tight binding approach
We analyze the electronic structure of group III-V semiconductors obtained
within full potential linearized augmented plane wave (FP-LAPW) method and
arrive at a realistic and minimal tight-binding model, parameterized to provide
an accurate description of both valence and conduction bands. It is shown that
cation sp3 - anion sp3d5 basis along with the next nearest neighbor model for
hopping interactions is sufficient to describe the electronic structure of
these systems over a wide energy range, obviating the use of any fictitious s*
orbital, employed previously. Similar analyses were also performed for the
II-VI semiconductors, using the more accurate FP-LAPW method compared to
previous approaches, in order to enhance reliability of the parameter values.
Using these parameters, we calculate the electronic structure of III-V and
II-VI nanocrystals in real space with sizes ranging upto about 7 nm in
diameter, establishing a quantitatively accurate description of the band-gap
variation with sizes for the various nanocrystals by comparing with available
experimental results from the literature.Comment: 28 pages, 8 figures, Accepted for publication in Phys. Rev.
3D characterization of CdSe nanoparticles attached to carbon nanotubes
The crystallographic structure of CdSe nanoparticles attached to carbon
nanotubes has been elucidated by means of high resolution transmission electron
microscopy and high angle annular dark field scanning transmission electron
microscopy tomography. CdSe rod-like nanoparticles, grown in solution together
with carbon nanotubes, undergo a morphological transformation and become
attached to the carbon surface. Electron tomography reveals that the
nanoparticles are hexagonal-based with the (001) planes epitaxially matched to
the outer graphene layer.Comment: 7 pages, 8 figure
Archimedean-like colloidal tilings on substrates with decagonal and tetradecagonal symmetry
Two-dimensional colloidal suspensions subject to laser interference patterns
with decagonal symmetry can form an Archimedean-like tiling phase where rows of
squares and triangles order aperiodically along one direction [J. Mikhael et
al., Nature 454, 501 (2008)]. In experiments as well as in Monte-Carlo and
Brownian dynamics simulations, we identify a similar phase when the laser field
possesses tetradecagonal symmetry. We characterize the structure of both
Archimedean-like tilings in detail and point out how the tilings differ from
each other. Furthermore, we also estimate specific particle densities where the
Archimedean-like tiling phases occur. Finally, using Brownian dynamics
simulations we demonstrate how phasonic distortions of the decagonal laser
field influence the Archimedean-like tiling. In particular, the domain size of
the tiling can be enlarged by phasonic drifts and constant gradients in the
phasonic displacement. We demonstrate that the latter occurs when the
interfering laser beams are not adjusted properly
Importance of Polaronic Effects for Charge Transport in CdSe Quantum Dot Solids
We developed an accurate model accounting for electron-phonon interaction in colloidal
quantum dot supercrystals that allowed us to identify the nature of charge carriers and the
electrical transport regime. We find that in experimentally analyzed CdSe nanocrystal solids the electron-phonon interaction is sufficiently strong that small polarons localized to single dots are formed. Charge-carrier transport occurs by small polaron hopping between the dots, with mobility that decreases with increasing temperature. While such a temperature dependence of mobility is usually considered as a proof of band transport, we show that the same type of dependence occurs in the system where transport is dominated by small polaron hopping
Crystal Phase Transitions in the Shell of PbS CdS Core Shell Nanocrystals Influences Photoluminescence Intensity
ABSTRACT We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS shell of PbS CdS core shell nanocrystals formed by cationic exchange. The chemical composition profile of the core shell nanocrystals with different dimensions is determined by means of anomalous small angle X ray scattering with subnanometer resolution and is compared to X ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing Exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but Shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thicknes
Surface Doping Quantum Dots with Chemically Active Native Ligands: Controlling Valence without Ligand Exchange
One remaining challenge in the field of colloidal semiconductor nanocrystal quantum dots is learning to control the degree of functionalization or valence per nanocrystal. Current quantum dot surface modification strategies rely heavily on ligand exchange, which consists of replacing the nanocrystal\u27s native ligands with carboxylate- or amine-terminated thiols, usually added in excess. Removing the nanocrystal\u27s native ligands can cause etching and introduce surface defects, thus affecting the nanocrystal\u27s optical properties. More importantly, ligand exchange methods fail to control the extent of surface modification or number of functional groups introduced per nanocrystal. Here, we report a fundamentally new surface ligand modification or doping approach aimed at controlling the degree of functionalization or valence per nanocrystal while retaining the nanocrystal\u27s original colloidal and photostability. We show that surface-doped quantum dots capped with chemically active native ligands can be prepared directly from a mixture of ligands with similar chain lengths. Specifically, vinyl and azide-terminated carboxylic acid ligands survive the high temperatures needed for nanocrystal synthesis. The ratio between chemically active and inactive-terminated ligands is maintained on the nanocrystal surface, allowing to control the extent of surface modification by straightforward organic reactions. Using a combination of optical and structural characterization tools, including IR and 2D NMR, we show that carboxylates bind in a bidentate chelate fashion, forming a single monolayer of ligands that are perpendicular to the nanocrystal surface. Moreover, we show that mixtures of ligands with similar chain lengths homogeneously distribute themselves on the nanocrystal surface. We expect this new surface doping approach will be widely applicable to other nanocrystal compositions and morphologies, as well as to many specific applications in biology and materials science
Morphology of epitaxial core-shell nanowires
We analyze the morphological stability against azimuthal, axial, and general
helical perturbations for epitaxial core-shell nanowires in the growth regimes
limited by either surface diffusion or evaporation-condensation surface
kinetics. For both regimes, we find that geometric parameters (i.e., core
radius and shell thickness) play a central role in determining whether the
nanowire remains cylindrical or its shell breaks up into epitaxial islands
similar to those observed during Stranski-Krastanow growth in thin epilayers.
The combination of small cores and rapid growth of the shell emerge as key
ingredients for stable shell growth. Our results provide an explanation for the
different core-shell morphologies reported in the Si-Ge system experimentally,
and also identify a growth-induced intrinsic mechanism for the formation of
helical nanowires.Comment: In press, Nano Letters (7 pages, 4 figures
- …