84 research outputs found
Bethe eigenvectors of higher transfer matrices
We consider the XXX-type and Gaudin quantum integrable models associated with
the Lie algebra . The models are defined on a tensor product irreducible
-modules. For each model, there exist one-parameter families of
commuting operators on the tensor product, called the transfer matrices. We
show that the Bethe vectors for these models, given by the algebraic nested
Bethe ansatz are eigenvectors of higher transfer matrices and compute the
corresponding eigenvalues.Comment: 48 pages, amstex.tex (ver 2.2), misprints correcte
On the Bethe Ansatz for the Jaynes-Cummings-Gaudin model
We investigate the quantum Jaynes-Cummings model - a particular case of the
Gaudin model with one of the spins being infinite. Starting from the Bethe
equations we derive Baxter's equation and from it a closed set of equations for
the eigenvalues of the commuting Hamiltonians. A scalar product in the
separated variables representation is found for which the commuting
Hamiltonians are Hermitian. In the semi classical limit the Bethe roots
accumulate on very specific curves in the complex plane. We give the equation
of these curves. They build up a system of cuts modeling the spectral curve as
a two sheeted cover of the complex plane. Finally, we extend some of these
results to the XXX Heisenberg spin chain.Comment: 16 page
Integrable Models From Twisted Half Loop Algebras
This paper is devoted to the construction of new integrable quantum
mechanical models based on certain subalgebras of the half loop algebra of
gl(N). Various results about these subalgebras are proven by presenting them in
the notation of the St Petersburg school. These results are then used to
demonstrate the integrability, and find the symmetries, of two types of
physical system: twisted Gaudin magnets, and Calogero-type models of particles
on several half-lines meeting at a point.Comment: 22 pages, 1 figure, Introduction improved, References adde
Manin matrices and Talalaev's formula
We study special class of matrices with noncommutative entries and
demonstrate their various applications in integrable systems theory. They
appeared in Yu. Manin's works in 87-92 as linear homomorphisms between
polynomial rings; more explicitly they read: 1) elements in the same column
commute; 2) commutators of the cross terms are equal: (e.g. ). We claim
that such matrices behave almost as well as matrices with commutative elements.
Namely theorems of linear algebra (e.g., a natural definition of the
determinant, the Cayley-Hamilton theorem, the Newton identities and so on and
so forth) holds true for them.
On the other hand, we remark that such matrices are somewhat ubiquitous in
the theory of quantum integrability. For instance, Manin matrices (and their
q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and
the so--called Cartier-Foata matrices. Also, they enter Talalaev's
hep-th/0404153 remarkable formulas: ,
det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show
that theorems of linear algebra, after being established for such matrices,
have various applications to quantum integrable systems and Lie algebras, e.g
in the construction of new generators in (and, in general,
in the construction of quantum conservation laws), in the
Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also
discuss applications to the separation of variables problem, new Capelli
identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints
e.g. in Newton id-s fixed, normal ordering convention turned to standard one,
refs. adde
Black Silicon with high density and high aspect ratio nanowhiskers
Physical properties of black Silicon (b-Si) formed on Si wafers by reactive
ion etching in chlorine plasma are reported in an attempt to clarify the
formation mechanism and the origin of the observed optical and electrical
phenomena which are promising for a variety of applications. The b-Si
consisting of high density and high aspect ratio sub-micron length whiskers or
pillars with tip diameters of well under 3 nm exhibits strong photoluminescence
(PL) both in visible and infrared, which are interpreted in conjunction with
defects, confinement effects and near band-edge emission. Structural analysis
indicate that the whiskers are all crystalline and encapsulated by a thin Si
oxide layer. Infrared vibrational spectrum of Si-O-Si bondings in terms of
transverse-optic (TO) and longitudinal-optic (LO) phonons indicates that
disorder induced LO-TO optical mode coupling can be an effective tool in
assessing structural quality of the b-Si. The same phonons are likely coupled
to electrons in visible region PL transitions. Field emission properties of
these nanoscopic features are demonstrated indicating the influence of the tip
shape on the emission. Overall properties are discussed in terms of surface
morphology of the nano whiskers
Limits of Gaudin algebras, quantization of bending flows, Jucys--Murphy elements and Gelfand--Tsetlin bases
Gaudin algebras form a family of maximal commutative subalgebras in the
tensor product of copies of the universal enveloping algebra U(\g) of a
semisimple Lie algebra \g. This family is parameterized by collections of
pairwise distinct complex numbers . We obtain some new commutative
subalgebras in U(\g)^{\otimes n} as limit cases of Gaudin subalgebras. These
commutative subalgebras turn to be related to the hamiltonians of bending flows
and to the Gelfand--Tsetlin bases. We use this to prove the simplicity of
spectrum in the Gaudin model for some new cases.Comment: 11 pages, references adde
Feigin-Frenkel center in types B, C and D
For each simple Lie algebra g consider the corresponding affine vertex
algebra V_{crit}(g) at the critical level. The center of this vertex algebra is
a commutative associative algebra whose structure was described by a remarkable
theorem of Feigin and Frenkel about two decades ago. However, only recently
simple formulas for the generators of the center were found for the Lie
algebras of type A following Talalaev's discovery of explicit higher Gaudin
Hamiltonians. We give explicit formulas for generators of the centers of the
affine vertex algebras V_{crit}(g) associated with the simple Lie algebras g of
types B, C and D. The construction relies on the Schur-Weyl duality involving
the Brauer algebra, and the generators are expressed as weighted traces over
tensor spaces and, equivalently, as traces over the spaces of singular vectors
for the action of the Lie algebra sl_2 in the context of Howe duality. This
leads to explicit constructions of commutative subalgebras of the universal
enveloping algebras U(g[t]) and U(g), and to higher order Hamiltonians in the
Gaudin model associated with each Lie algebra g. We also introduce analogues of
the Bethe subalgebras of the Yangians Y(g) and show that their graded images
coincide with the respective commutative subalgebras of U(g[t]).Comment: 29 pages, constructions of Pfaffian-type Sugawara operators and
commutative subalgebras in universal enveloping algebras are adde
Classical R-Matrices and the Feigin-Odesskii Algebra via Hamiltonian and Poisson Reductions
We present a formula for a classical -matrix of an integrable system
obtained by Hamiltonian reduction of some free field theories using pure gauge
symmetries. The framework of the reduction is restricted only by the assumption
that the respective gauge transformations are Lie group ones. Our formula is in
terms of Dirac brackets, and some new observations on these brackets are made.
We apply our method to derive a classical -matrix for the elliptic
Calogero-Moser system with spin starting from the Higgs bundle over an elliptic
curve with marked points. In the paper we also derive a classical
Feigin-Odesskii algebra by a Poisson reduction of some modification of the
Higgs bundle over an elliptic curve. This allows us to include integrable
lattice models in a Hitchin type construction.Comment: 27 pages LaTe
Creation of the territory of the advancing socio-economic development as a way to diversify the economy of a single-industry city
In the scientific work the definition of the concept of “single-industry city” is given, its criteria and characteristics are highlighted.The necessity of state support in the development of single-industry towns is substantiated. It is proved that one of the main ways to assist in the diversification of the economy of single-industry towns is the creation of territories of advanced socio-economic development in them, which are characterized by special conditions and have their own characteristic
- …
