We investigate the quantum Jaynes-Cummings model - a particular case of the
Gaudin model with one of the spins being infinite. Starting from the Bethe
equations we derive Baxter's equation and from it a closed set of equations for
the eigenvalues of the commuting Hamiltonians. A scalar product in the
separated variables representation is found for which the commuting
Hamiltonians are Hermitian. In the semi classical limit the Bethe roots
accumulate on very specific curves in the complex plane. We give the equation
of these curves. They build up a system of cuts modeling the spectral curve as
a two sheeted cover of the complex plane. Finally, we extend some of these
results to the XXX Heisenberg spin chain.Comment: 16 page