244 research outputs found

    Scanning Electron Microscopic Observation of the Crista Ampullaris

    Get PDF
    The crista ampullaris of the guinea pig and the bull frog were investigated by scanning electron microscopy. The crista ampullaris were freeze fractured or sheared followed by maceration with 0.1% OsO4 solution. Following this, three-dimensional intracellular structures were observed. The mitochondria of the sensory cells varied in shape from globular to long and slender. Golgi apparatus and endoplasmic reticulum of the sensory cells were also demonstrated clearly. Nerve elements, nerve endings and synaptic structures were also observed stereoscopically

    Pemphigus Vulgaris with Marked Stenosis of the Esophageal Orifice from an Osteoporosis Drug: a Case Study with Long-term Follow-up

    Get PDF
    Pemphigus vulgaris produces multiple and intractable erosions of the oral mucosa in the head and neck region. We describe a case of pemphigus vulgaris that showed erosions in the hypopharynx and stenosis of the esophageal orifice from an osteoporosis drug. A 73-year-old woman was admitted with oral intake difficulty and erosions in the hypopharynx. During the first admission, we could not make a definite diagnosis by biopsy or blood examination. The condition of the mucosa worsened subsequently; an esophagram showed marked stenosis of the esophageal orifice. As a possible factor exacerbating the stenosis, an osteoporosis drug was considered. The stenosis was improved by balloon expansion. One year after the first medical examination, we finally made a definite diagnosis of pemphigus vulgaris from the results of a blood examination in which anti-desmoglein 3 turned positive when the hypopharyngeal erosions and stenosis of the esophageal orifice became worse. Systemic treatment with a steroid was effective for the control of pemphigus vulgaris; restenosis of the esophageal orifice was recognized twice during a state of remission, and careful follow-up will be necessary in the future

    Rare Variants of Putative Candidate Genes Associated With Sporadic Meniere's Disease in East Asian Population

    Get PDF
    Objectives: The cause of Meniere's disease (MD) is unclear but likely involves genetic and environmental factors. The aim of this study was to investigate the genetic basis underlying MD by screening putative candidate genes for MD. Methods: Sixty-eight patients who met the diagnostic criteria for MD of the Barany Society were included. We performed targeted gene sequencing using next generation sequencing (NGS) panel composed of 45 MD-associated genes. We identified the rare variants causing non-synonymous amino acid changes, stop codons, and insertions/deletions in the coding regions, and excluded the common variants with minor allele frequency >0.01 in public databases. The pathogenicity of the identified variants was analyzed by various predictive tools and protein structural modeling. Results: The average read depth for the targeted regions was 1446.3-fold, and 99.4% of the targeted regions were covered by 20 or more reads, achieving the high quality of the sequencing. After variant filtering, annotation, and interpretation, we identified a total of 15 rare heterozygous variants in 12 (17.6%) sporadic patients. Among them, four variants were detected in familial MD genes (DTNA, FAM136A, DPT), and the remaining 11 in MD-associated genes (PTPN22, NFKB1, CXCL10, TLR2, MTHFR, SLC44A2, NOS3, NOTCH2). Three patients had the variants in two or more genes. All variants were not detected in our healthy controls (n = 100). No significant differences were observed between patients with and without a genetic variant in terms of sex, mean age of onset, bilaterality, the type of MD, and hearing threshold at diagnosis. Conclusions: Our study identified rare variants of putative candidate genes in some of MD patients. The genes were related to the formation of inner ear structures, the immune-associated process, or systemic hemostasis derangement, suggesting the multiple genetic predispositions in the development of MD

    Expression of transient receptor potential channel vanilloid (TRPV) 1–4, melastin (TRPM) 5 and 8, and ankyrin (TRPA1) in the normal and methimazole-treated mouse olfactory epithelium

    Get PDF
    Conclusion: It is suggested that TRPV1, 2, 3, and 4, TRPM5 and 8, and TRPA1 may play several roles in the olfactory epithelium (OE), contributing to olfactory chemosensation, olfactory adaptation, olfactory-trigeminal interaction, and OE fluid homeostasis. In patients with olfactory disturbance, TRPV1 and TRPM8 may be closely related to a high rate of recognition of curry and menthol odors, while TRPV2 may also play a crucial role in the regeneration of olfactory receptor neurons. Objective: Expression of TRPV1–4, TRPM5 and 8, and TRPA1 in the normal and methimazole-treated mouse OE was analyzed. Methods: The localization of TRPV1–4, TRPM5 and 8, and TRPA1 in the OE of normal and methimazole-treated CBA/J mice was investigated by immunohistochemistry. Results: Normal OE showed a positive immunofluorescent reaction to TRPV1–4, TRPM5 and 8, and TRPA1. In lamina propria, the nerve fibers displayed TRPV 1, 2, and 3, TRPM8 and TRPA1. In the pathological condition, the expression of TRPV3, TRPV4, TRPM5, and TRPA1 was markedly reduced and took a long time to recover. In contrast, expression of TRPM8 was scarcely affected, even in the pathological condition, while TRPV1 and TRPV2 showed early recovery following methimazole treatment

    Cannabinoid Regulation of Nitric Oxide Synthase I (nNOS) in Neuronal Cells

    Get PDF
    In our previous studies, CB1 cannabinoid receptor agonists stimulated production of cyclic GMP and translocation of nitric oxide (NO)-sensitive guanylyl cyclase in neuronal cells (Jones et al., Neuropharmacology 54:23–30, 2008). The purpose of these studies was to elucidate the signal transduction of cannabinoid-mediated neuronal nitric oxide synthase (nNOS) activation in neuronal cells. Cannabinoid agonists CP55940 (2-[(1S,2R,5S)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol), WIN55212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate), and the metabolically stable analog of anandamide, (R)-(+)-methanandamide stimulated NO production in N18TG2 cells over a 20-min period. Rimonabant (N-(piperidin-lyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-H-pyrazole-3-carboxamide), a CB1 receptor antagonist, partially or completely curtailed cannabinoid-mediated NO production. Inhibition of NOS activity (NG-nitro-l-arginine) or signaling via Gi/o protein (pertussis toxin) significantly limited NO production by cannabinoid agonists. Ca2+ mobilization was not detected in N18TG2 cells after cannabinoid treatment using Fluo-4 AM fluorescence. Cannabinoid-mediated NO production was attributed to nNOS activation since endothelial NOS and inducible NOS protein and mRNA were not detected in N18TG2 cells. Bands of 160 and 155 kDa were detected on Western blot analysis of cytosolic and membrane fractions of N18TG2 cells, using a nNOS antibody. Chronic treatment of N18TG2 cells with cannabinoid agonists downregulated nNOS protein and mRNA as detected using Western blot analysis and real-time polymerase chain reaction, respectively. Cannabinoid agonists stimulated NO production via signaling through CB1 receptors, leading to activation of Gi/o protein and enhanced nNOS activity. The findings of these studies provide information related to cannabinoid-mediated NO signal transduction in neuronal cells, which has important implications in the ongoing elucidation of the endocannabinoid system in the nervous system

    Water transport in the inner ear considered from the endolymphatic hydrops model animals

    No full text
    corecore