2,441 research outputs found

    η\eta-Meson Decays and Strong UA(1)U_A(1) Breaking in the Three-Flavor Nambu-Jona-Lasinio Model

    Full text link
    We study the η→γγ\eta \to \gamma \gamma and η→π0γγ\eta \to \pi^0 \gamma \gamma decays using an extended three-flavor Nambu-Jona-Lasinio model that includes the 't~Hooft instanton induced interaction. We find that the η\eta-meson mass, the η→γγ\eta \to \gamma \gamma decay width and the η→π0γγ\eta \to \pi^0 \gamma \gamma decay width are in good agreement with the experimental values when the UA(1)U_{A}(1) breaking is strong and the flavor SU(3)SU(3) singlet-octet mixing angle θ\theta is about zero. The effects of the UA(1)U_A(1) breaking on the baryon number one and two systems are also studied.Comment: 12 pages, LaTeX, 2 eps figures, Talk given at the Joint Japan-Australia Workshop on Quarks, Hadrons and Nuclei, Adelaide, Australia, Nov. 15-24, 199

    Advancement of the Wide-angle JEM-EUSO Optical System with Holographic and Fresnel Lenses

    Get PDF
    JEM-EUSO is a space mission to observe extremely high-energy cosmic rays, evolved from the previous design studies of EUSO. It is adjusted for the Japan Experiment Module (JEM) of the International Space Station (ISS). JEM-EUSO uses a wide-angle refractive telescope in near-ultraviolet wavelength region to observe from ISS the time-and-space-resolved atmospheric fluorescence images of the extensive air showers. The JEM-EUSO optics is re-designed after the ESA-Phase A studies to upgrade the light-collecting-power by using a new material CYTOP, and its overall light-collecting power is about 1.5 times higher than the ESA-Phase A baseline optics. We describe in this paper an optimized optics design that maximizes the sensitivity of JEM-EUSO, and the results of the optics manufacturing tests

    Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy

    Full text link
    We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type" interfaces, Ti3+ signals appeared, which were absent for insulating "p-type" interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well below the critical thickness of 4 unit cells for metallic transport. Core-level shifts with LaAlO3 thickness were much smaller than predicted by the polar catastrophe model. We attribute these observations to surface defects/adsorbates providing charges to the interface even below the critical thickness

    Chemical potential shift induced by double-exchange and polaronic effects in Nd_{1-x}Sr_xMnO_3

    Full text link
    We have studied the chemical potential shift as a function of temperature in Nd1−x_{1-x}Srx_xMnO3_3 (NSMO) by measurements of core-level photoemission spectra. For ferromagnetic samples (x=0.4x=0.4 and 0.45), we observed an unusually large upward chemical potential shift with decreasing temperature in the low-temperature region of the ferromagnetic metallic (FM) phase. This can be explained by the double-exchange (DE) mechanism if the ege_g band is split by dynamical/local Jahn-Teller effect. The shift was suppressed near the Curie temperature (TCT_C), which we attribute to the crossover from the DE to lattice-polaron regimes.Comment: 5 pages, 6 figure

    Magnetic helicity transported by flux emergence and shuffling motions in Solar Active Region NOAA 10930

    Full text link
    We present a new methodology which can determine magnetic helicity transport by the passage of helical magnetic field lines from sub-photosphere and the shuffling motions of foot-points of preexisting coronal field lines separately. It is well known that only the velocity component which is perpendicular to the magnetic field (υ⊥B\upsilon_{\perp B}) has contribution to the helicity accumulation. Here, we demonstrate that υ⊥B\upsilon_{\perp B} can be deduced from horizontal motion and vector magnetograms, under a simple relation of υt=μt+υnBnBt\upsilon_t = \mu_t + \frac{\upsilon_n}{B_n} B_t as suggested by Deˊ\acute{e}moulin & Berger (2003). Then after dividing υ⊥B\upsilon_{\perp B} into two components, as one is tangential and the other is normal to the solar surface, we can determine both terms of helicity transport. Active region (AR) NOAA 10930 is analyzed as an example during its solar disk center passage by using data obtained by the Spectro-Polarimeter and the Narrowband Filter Imager of Solar Optical Telescope on board Hinode. We find that in our calculation, the helicity injection by flux emergence and shuffling motions have the same sign. During the period we studied, the main contribution of helicity accumulation comes from the flux emergence effect, while the dynamic transient evolution comes from the shuffling motions effect. Our observational results further indicate that for this AR, the apparent rotational motion in the following sunspot is the real shuffling motions on solar surface

    Spectroscopy of SrRuO/Ru Junctions in Eutectic

    Full text link
    We have investigated the tunnelling properties of the interface between superconducting Sr2RuO4 and a single Ru inclusion in eutectic. By using a micro-fabrication technique, we have made Sr2RuO4/Ru junctions on the eutectic system that consists of Sr2RuO4 and Ru micro-inclusions. Such a eutectic system exhibits surface superconductivity, called the 3-K phase. A zero bias conductance peak (ZBCP) was observed in the 3-K phase. We propose to use the onset of the ZBCP to delineate the phase boundary of a time-reversal symmetry breaking state.Comment: To be published in Proc of 24th Int. Conf. on Low Temperature Physics (LT24); 2 page

    Chemical potential landscape in band filling and bandwidth-control of manganites: Photoemission spectroscopy measurements

    Full text link
    We have studied the effects of band filling and bandwidth control on the chemical potential in perovskite manganites R1−xAxR_{1-x}A_xMnO3_3 (RR : rare earth, AA : alkaline earth) by measurements of core-level photoemission spectra. A suppression of the doping-dependent chemical potential shift was observed in and around the CE-type charge-ordered composition range, indicating that there is charge self-organization such as stripe formation or its fluctuations. As a function of bandwidth, we observed a downward chemical potential shift with increasing bandwidth due to the reduction of the orthorhombic distortion. After subtracting the latter contribution, we found an upward chemical potential shift in the ferromagnetic metallic region 0.3<x<0.50.3<x<0.5, which we attribute to the enhancement of double-exchange interaction involving the Jahn-Teller-split ege_g band.Comment: 5 pages, 4 figure

    Continuous measurements of upper atmospheric lightning discharges by EUSO

    No full text
    In this study we present possibility of continuous measurements of lightning-associated transient luminous events (TLEs) from the international space station using the Extreme Universe Space Observatory (EUSO) telescope. From global lightning data we estimated possible detection rates of lightning and TLEs. We also estimated photon numbers and optical spectra of TLEs in the near-ultraviolet region (300400 nm) where the fluorescence emission caused by CRs exists. These results imply that EUSO has enough capabilities to monitor not only UHECRs but also global lightning and TLEs. We are developing a new-type of high-voltage divider for multi-anode photomultiplier tubes (MAPMTs) which can automatically change the gain level rapidly (< 350 microseconds) and which enable us to carry out both UHECR and TLE observations. An electronic design and performance of the divider circuit will be presented
    • …
    corecore