248 research outputs found

    Automation and crew time saving in the space experiment

    Get PDF
    We describe preliminary results of the feasibility study of automation and crew workload saving in space experiments on the space station. Some functions have been studied that can be automated within a single rack and without major impact to the development process and costs. In addition, we assume the following premises: (1) applicable as the second generation apparatuses; (2) maximum reduction of the crew workload; and (3) automation between racks including storage. Four apparatuses have been selected as the study case; results for three are summarized

    Intercellular Adhesive Structures Between Stellate Cells – An Analysis in Cultured Human Hepatic Stellate Cells

    Get PDF
    To investigate whether or not hepatic stellate cells can form intercellular junctions with each other, we cultured human stellate cells (LI90) on different kinds of substrata. Intercellular junctions were detected between these cultured stellate cells by transmission electron microscopy (TEM). The molecular components of the intercellular adhesive structures were identified by immunofluorescence microscopy. Immunofluorescence for cadherin and catenins was detected at the adhesion sites between the cultured stellate cells. Thus, the intercellular junctions were indicated to be adherens junctions at the molecular level. The junctions developed in the cultured stellate cells irrespective of the type of substratum. These data suggest that the junctional formation between the stellate cells occurs in vivo as well as in vitro

    SkewC : Identifying cells with skewed gene body coverage in single-cell RNA sequencing data

    Get PDF
    The analysis and interpretation of single-cell RNA sequencing (scRNA-seq) experiments are compromised by the presence of poor-quality cells. For meaningful analyses, such poor-quality cells should be excluded as they introduce noise in the data. We introduce SkewC, a quality-assessment tool, to identify skewed cells in scRNA-seq experiments. The tool's methodology is based on the assessment of gene coverage for each cell, and its skewness as a quality measure; the gene body coverage is a unique characteristic for each protocol, and different protocols yield highly different coverage profiles. This tool is designed to avoid misclustering or false clusters by identifying, isolating, and removing cells with skewed gene body coverage profiles. SkewC is capable of processing any type of scRNA-seq dataset, regardless of the protocol. We envision SkewC as a distinctive QC method to be incorporated into scRNA-seq QC processing to preclude the possibility of scRNA-seq data misinterpretation.Peer reviewe

    The thermal conductivity of the spin-1/2 XXZ chain at arbitrary temperature

    Full text link
    Motivated by recent investigations of transport properties of strongly correlated 1d models and thermal conductivity measurements of quasi 1d magnetic systems we present results for the integrable spin-1/2 XXZXXZ chain. The thermal conductivity κ(ω)\kappa(\omega) of this model has ℜκ(ω)=κ~δ(ω)\Re\kappa(\omega)=\tilde\kappa \delta(\omega), i.e. it is infinite for zero frequency ω\omega. The weight κ~\tilde\kappa of the delta peak is calculated exactly by a lattice path integral formulation. Numerical results for wide ranges of temperature and anisotropy are presented. The low and high temperature limits are studied analytically.Comment: 12 page
    • …
    corecore