10,805 research outputs found

    Characteristics of liquid cluster ion beam for surface treatment

    Get PDF
    A liquid cluster ion source, which is an ion source for the cluster beams produced with liquid materials, has been developed for the surface treatment of solid materials. The electrodes were designed for increasing the cluster beam intensity by a computer simulation of beam trajectories. The peaks of the cluster size distributions of the water and ethanol cluster ion beams of 3 atm vapor pressure were approximately at 2.4×103 and 1.6×103 molecules, respectively. The cluster size distributions of ethanol clusters were not sensitive to the variations of the acceleration voltages (Ve) and currents (Ie) of the electrons for ionization when the Ve and Ie were larger than approximately 200 V and 200 mA, respectively

    Contracted Representation of Yang's Space-Time Algebra and Buniy-Hsu-Zee's Discrete Space-Time

    Full text link
    Motivated by the recent proposition by Buniy, Hsu and Zee with respect to discrete space-time and finite spatial degrees of freedom of our physical world with a short- and a long-distance scales, lPl_P and L,L, we reconsider the Lorentz-covariant Yang's quantized space-time algebra (YSTA), which is intrinsically equipped with such two kinds of scale parameters, λ\lambda and RR. In accordance with their proposition, we find the so-called contracted representation of YSTA with finite spatial degrees of freedom associated with the ratio R/λR/\lambda, which gives a possibility of the divergence-free noncommutative field theory on YSTA. The canonical commutation relations familiar in the ordinary quantum mechanics appear as the cooperative Inonu-Wigner's contraction limit of YSTA, λ0\lambda \to 0 and $R \to \infty.

    Broken-Bond Rule for the Surface Energies of Noble Metals

    Full text link
    Using two different full-potential ab-initio techniques we introduce a simple, universal rule based on the number of broken first-neighbor bonds to determine the surface energies of the three noble metals Cu, Ag and Au. When a bond is broken, the rearrangement of the electronic charge for these metals does not lead to a change of the remaining bonds. Thus the energy needed to break a bond is independent of the surface orientation. This novel finding can lead to the development of simple models to describe the energetics of a surface like step and kink formation, crystal growth, alloy formation, equilibrium shape of mesoscopic crystallites and surface faceting.Comment: 4 pages, 2 figure

    Self-Organized Criticality in Compact Plasmas

    Full text link
    Compact plasmas, that exist near black-hole candidates and in gamma ray burst sources, commonly exhibit self-organized non-linear behavior. A model that simulates the non-linear behavior of compact radiative plasmas is constructed directly from the observed luminosity and variability. The simulation shows that such plasmas self organize, and that the degree of non-linearity as well as the slope of the power density spectrum increase with compactness. The simulation is based on a cellular automaton table that includes the properties of the hot (relativistic) plasmas, and the magnitude of the energy perturbations. The plasmas cool or heat up, depending on whether they release more or less than the energy of a single perturbation. The energy release depends on the plasmas densities and temperatures, and the perturbations energy. Strong perturbations may cool the previously heated plasma through shocks and/or pair creation. New observations of some active galactic nuclei and gamma ray bursters are consistent with the simulationComment: 9 pages, 5 figures, AASTeX, Submitted to ApJ

    Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain

    Get PDF
    Poor sleep quality is associated with unfavorable psychological measurements, whereas sleep duration has complex relationships with such measurements. The aim of this study was to identify the associations between microstructural properties of the brain and sleep duration/sleep quality in a young adult. The associations between mean diffusivity (MD), a measure of diffusion tensor imaging (DTI), and sleep duration/sleep quality were investigated in a study cohort of 1201 normal young adults. Positive correlations between sleep duration and MD of widespread areas of the brain, including the prefrontal cortex (PFC) and the dopaminergic systems, were identified. Negative correlations between sleep quality and MD of the widespread areas of the brain, including the PFC and the right hippocampus, were also detected. Lower MD has been previously associated with more neural tissues in the brain. Further, shorter sleep duration was associated with greater persistence and executive functioning (lower Stroop interference), whereas good sleep quality was associated with states and traits relevant to positive affects. These results suggest that bad sleep quality and longer sleep duration were associated with aberrant neurocognitive measurements in the brain in healthy young adults

    Imperfect Detectors in Linear Optical Quantum Computers

    Full text link
    We discuss the effects of imperfect photon detectors suffering from loss and noise on the reliability of linear optical quantum computers. We show that for a given detector efficiency, there is a maximum achievable success probability, and that increasing the number of ancillary photons and detectors used for one controlled sign flip gate beyond a critical point will decrease the probability that the computer will function correctly. We have also performed simulations of some small logic gates and estimate the efficiency and noise levels required for the linear optical quantum computer to function properly.Comment: 13 pages, 5 figure

    Evolution of the Fermi surface with carrier concentration in Bi_2Sr_2CaCu_2O_{8+\delta}

    Get PDF
    We show, by use of angle-resolved photoemission spectroscopy, that underdoped Bi_2Sr_2CaCu_2O_{8+\delta} appears to have a large Fermi surface centered at (\pi,\pi), even for samples with a T_c as low as 15 K. No clear evidence of a Fermi surface pocket around (\pi/2,\pi/2) has been found. These conclusions are based on a determination of the minimum gap locus in the pseudogap regime T_c < T < T^*, which is found to coincide with the locus of gapless excitations in momentum space (Fermi surface) determined above T^*. These results suggest that the pseudogap is more likely of precursor pairing rather than magnetic origin.Comment: 4 pages, revtex, 4 postscript color figure
    corecore