31 research outputs found

    Thermal stress induces glycolytic beige fat formation via a myogenic state.

    Get PDF
    Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival

    BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.

    Get PDF
    Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health

    Adiponectin suppression of late inflammatory mediator, HMGB1-induced cytokine expression in RAW264 macrophage cells

    Get PDF
    High-mobility group protein B1 (HMGB1) is a late inflammatory mediator released from inflammatory cells when stimulated, resulting in exaggerating septic symptoms. We recently demonstrated that full-length adiponectin, a potent anti-inflammatory adipokine, inhibits lipopolysaccharide-induced HMGB1 release. However, the effects of adiponectin on HMGB1-induced exaggerating signals currently remain unknown. This study aimed to investigate the effects of adiponectin on the pro-inflammatory function of HMGB1 in RAW264 macrophage cells. The treatment of RAW264 cells with HMGB1 significantly up-regulated the mRNA expression of tumour necrosis factor-alpha, interleukin-1 beta and C-X-C motif chemokine 10. HMGB1-induced cytokine expression was markedly suppressed by a toll-like receptor 4 (TLR4) antagonist and slightly suppressed by an antagonist of the receptor for advanced glycation end products. A prior treatment with full-length or globular adiponectin dose-dependently suppressed all types of HMGB1-induced cytokine expression, and this suppression was abolished by compound C, an AMPK inhibitor, but not by the haem oxygenase (HO)-1 inhibitor, zinc protoporphyrin IX. Both forms of adiponectin also reduced the mRNA expression of TLR4. These results suggest that full-length and globular adiponectin suppress HMGB1-induced cytokine expression through an AMPK-mediated HO-1-independent pathway
    corecore