253 research outputs found

    Solving problems of 4D minimal SO(10) model in a warped extra dimension

    Full text link
    The minimal renormalizable supersymmetric SO(10) model, an SO(10) framework with only one 10 and one 126 Higgs multiplets in the Yukawa sector, is attractive because of its high predictive power for the neutrino oscillation data. However, this model suffers from problems related to running of gauge couplings. The gauge coupling unification may be spoiled due to the presence of Higgs multiplets much lighter than the grand unification (GUT) scale. In addition, the gauge couplings blow up around the GUT scale because of the presence of Higgs multiplets of large representations. We consider the minimal SO(10) model in the warped extra dimension and find a possibility to solve these problems.Comment: 12 pages, no figure; version to appear in Phys. Rev.

    A simple SO(10) GUT in five dimensions

    Full text link
    A simple supersymmetric SO(10) GUT in five dimensions is considered. The fifth dimension is compactified on the S1/(Z2×Z2)S^1/(Z_2\times Z_2^\prime) orbifold possessing two inequivalent fixed points. In our setup, all matter and Higgs multiplets reside on one brane (PS brane) where the original SO(10) gauge group is broken down to the Pati-Salam (PS) gauge group, SU(4)_c \timesSU(2)_L \times SU(2)R_R, by the orbifold boundary condition, while only the SO(10) gauge multiplet resides in the bulk. The further breaking of the PS symmetry to the Standard Model gauge group is realized by Higgs multiplets on the PS brane as usual in four dimensional models. Proton decay is fully suppressed. In our simple setup, the gauge coupling unification is realized after incorporating threshold corrections of Kaluza-Klein modes. When supersymmetry is assumed to be broken on the other brane, supersymmetry breaking is transmitted to the PS brane through the gaugino mediation with the bulk gauge multiplet.Comment: 12 pages, 1 figure, some errors have been corrected (no change in conclusions

    Single-Molecule Analysis of Epidermal Growth Factor Signaling that Leads to Ultrasensitive Calcium Response

    Get PDF
    AbstractQuantitative relationships between inputs and outputs of signaling systems are fundamental information for the understanding of the mechanism of signal transduction. Here we report the correlation between the number of epidermal growth factor (EGF) bindings and the response probability of intracellular calcium elevation. Binding of EGF molecules and changes of intracellular calcium concentration were measured for identical HeLa human epithelial cells. It was found that 300 molecules of EGF were enough to induce calcium response in half of the cells. This number is quite small compared to the number of EGF receptors (EGFR) expressed on the cell surface (50,000). There was a sigmoidal correlation between the response probability and the number of EGF bindings, meaning an ultrasensitive reaction. Analysis of the cluster size distribution of EGF demonstrated that dimerization of EGFR contributes to this switch-like ultrasensitive response. Single-molecule analysis revealed that EGF bound faster to clusters of EGFR than to monomers. This property should be important for effective formation of signaling dimers of EGFR under very small numbers of EGF bindings and suggests that the expression of excess amounts of EGFR on the cell surface is required to prepare predimers of EGFR with a large association rate constant to EGF

    Phenomenology in the Zee Model with the A_4 Symmetry

    Full text link
    The Zee model generates neutrino masses at the one-loop level by adding charged SU(2)_L-singlet and extra SU(2)_L-doublet scalars to the standard model of particle physics. As the origin of the nontrivial structure of the lepton flavor mixing, we introduce the softly broken A_4 symmetry to the Zee model. This model is compatible with the tribimaximal mixing which agrees well with neutrino oscillation measurements. Then, a sum rule m_1 e^{i alpha_12} + 2 m_2 + 3 m_3 e^{i alpha_32} = 0 is obtained and it results in Delta m^2_31 < 0 and m_3 > 1.8*10^{-2}eV. The effective mass |(M_nu)_{ee}| for the neutrinoless double beta decay is predicted as | (M_\nu)_{ee} | > 1.7*10^{-2}eV. The characteristic particles in this model are SU(2)_L-singlet charged Higgs bosons s^+_alpha (alpha=xi,eta,zeta) which are made from a 3-representation of A_4. Contributions of s^+_alpha to the lepton flavor violating decays of charged leptons are almost forbidden by an approximately remaining Z_3 symmetry; only BR(tau to ebar mu mu) can be sizable by the flavor changing neutral current interaction with SU(2)_L-doublet scalars. Therefore, s^+_alpha can be easily light enough to be discovered at the LHC with satisfying current constraints. The flavor structures of BR(s^-_alpha to ell nu) are also discussed.Comment: 26 pages, 4 figures, version accepted by PR

    Axion and Right-handed Neutrino in the Minimal SUSY SO(10) Model

    Full text link
    The connection between the axion and right-handed neutrinos is explored in the framework of the minimal SUSY SO(10) model. The former is related to the Peccei-Quinn (PQ) solution to the strong CP problem and the latter is to the light Majorana neutrinos through the see-saw mechanism. In this model, a relative phase between (10,1,3)(ΔˉR)126ˉ({\bf 10,1,3}) (\equiv {\bf \bar{\Delta}}_R) \subset {\bf \bar{126}} and (10ˉ,1,3)(ΔR)126({\bf \bar{10},1,3}) (\equiv {\bf \Delta}_R) \subset {\bf 126} multiplets of SU(4)×SU(2)L×SU(2)RSO(10){\rm SU}(4) \times {\rm SU}(2)_L \times {\rm SU}(2)_R \subset {\rm SO}(10) becomes a physical degree of freedom identified with the axion. Then, the PQ symmetry breaking scale (ΛPQ\Lambda_{\rm PQ}) and the BLB-L symmetry breaking scale (ΛBL\Lambda_{\rm B-L}) coincide through the VEV of ΔˉR{\bf \bar{\Delta}}_R. The scalar partner of the lightest right-handed neutrino is regarded as the inflaton, which gives a consistent density fluctuation for the CMB.Comment: 8 pages, no figure; the version to appear in JHE

    Perturbative SO(10) Grand Unification

    Full text link
    We consider a phenomenologically viable SO(10) grand unification model of the unification scale MGM_G around 101610^{16} GeV which reproduces the MSSM at low energy and allows perturbative calculations up to the Planck scale MPM_P or the string scale MstM_{st}. Both requirements strongly restrict a choice of Higgs representations in a model. We propose a simple SO(10) model with a set of Higgs representations {2×10+16ˉ+16+45}\{2 \times {\bf 10} + {\bf \bar{16}} + {\bf 16} + {\bf 45} \} and show its phenomenological viability. This model can indeed reproduce the low-energy experimental data relating the charged fermion masses and mixings. Neutrino oscillation data can be consistently incorporated in the model, leading to the right-handed neutrino mass scale MRMG2/MPM_R \simeq M_G^2/M_P. Furthermore, there exists a parameter region which results the proton life time consistent with the experimental results.Comment: 14 pages, no figure, section5 was slightly modifie

    Mis16 and Mis18 Are Required for CENP-A Loading and Histone Deacetylation at Centromeres

    Get PDF
    AbstractCentromeres contain specialized chromatin that includes the centromere-specific histone H3 variant, spCENP-A/Cnp1. Here we report identification of five fission yeast centromere proteins, Mis14–18. Mis14 is recruited to kinetochores independently of CENP-A, and, conversely, CENP-A does not require Mis14 to associate with centromeres. In contrast, Mis15, Mis16 (strong similarity with human RbAp48 and RbAp46), Mis17, and Mis18 are all part of the CENP-A recruitment pathway. Mis15 and Mis17 form an evolutionarily conserved complex that also includes Mis6. Mis16 and Mis18 form a complex and maintain the deacetylated state of histones specifically in the central core of centromeres. Mis16 and Mis18 are the most upstream factors in kinetochore assembly as they can associate with kinetochores in all kinetochore mutants except for mis18 and mis16, respectively. RNAi knockdown in human cells shows that Mis16 function is conserved as RbAp48 and RbAp46 are both required for localization of human CENP-A
    corecore