論 文 要 旨 等 報 告 書

氏 柳田 剛 志
 授与した学位
 専攻分野の名称
 学位授与の番号
 学位授与の日付 平 成 19 年 3 月 23 日
 学位授与の要件 医歯学総合研究科機能再生•再建科学専攻（学位規則第4条第1項該当）
 学位 論 文 題 名 成長板軟骨細胞と軟骨肉腫由来の軟骨細胞株におけるCCN4／WISP1 mRNAおよびそのスプライシングバリアントの発現

論文審査委員 教授 滝川 正春教授 北山 滋雄 助教授池亀美華

学 位 論 文 内 容 の要旨

【目的】

Wnt－signaling inducible secreted protein 1 （WISP1）／CCN family 4 （CCN4）遺伝子は 1998年にマウスメラノーマ細胞において Elml という名で同定され，その後ヒト腫瘍細胞にお いてWnt－signaling pathway 下流の β－カテニンにより誘導される遺伝子群のびとつ，WISP1 と同じものであることが分かった。 現在では遺伝子の構造が似ていることからCCNファミリ ーというタンパク質群のひとつに分類されている。CCNファミリータンパク質の構造はシステ インに富む IGFBP，VWC，TSP，CT という 4 つのモジュールで構成されているという特徴を持ち，各モジュールは様々な分子と相互作用を持つという性質を有している。 CCNファミリータン パク質の発揮する多彩な機能は，この特徴的な構造と性質によると考えられている。
今回研究対象としたCCN4／WISP1 には，癌転移を抑えるという報告や，VWC モジュールを欠落 するスプライシングバリアントであるWISP1v が悪性の胃癌で過剰に発現するという報告に代表されるように，悪性腫瘍との関わりに関する報告は多く存在する一方，正常な組織での生理的機能はまだほとんど研究されていない。また CCN ファミリーメンバーの遺伝子の中でスプラ イシングバリアントが存在するのはCCN4／WSIP1 とCCN6／WISP3 だけであり，その意義にも興味 が持たれる。
本研究ではCCN4／WISP1 および WISP1v の軟骨細胞における発現とその生理的意義について検討した。

【材料及び方法】

1，細胞培掏：ヒト軟骨肉腫由来細胞株（HCS－2／8），MDA231，HeLa，A371，HEK293，骨肉腫由来細胞株（SaOS2）は 10% FBS 添加 D－MEM にて培囱した。また HUVEC の培罜には EBM－2 complete mediumを使用した。 ウサギ肋軟骨由来初代軟骨細胞（RGC ce11）は 10% FBS 添加 α－MEM で培養した。
2，遺伝子導入：HCS－2／8 細胞を 6 well プレートに 50 万／well で播種し， 24 時間後に FuGENE6 を用いて遺伝子導入を行った。 細胞への導入後 48 時間後にサンプルを回収しウェスタンブ ロッティング法，RT－PCR 法に用いた。

3，RT－PCR 法：RNeasy kit を用いて回収した Total RNAを0ligod（T）プライマーで逆転写し cDNAとした。 cDNAのPCR反応は通法どおり行った。
4，cDNA クローニングとCCN4／WISP1 発現ベクターの作成：CCN4／WISP1 のcDNAをpGEM T－easy ベクターに挿入した。CCN4／WISP1およびWISP1v発現ベクターはMammalian Amino－Terminal FLAGベクターにcDNA を挿入し作成した。WISP1vx発現ベクターはWISP1v 発現ベクターから エクソンに相当する部位を抜き取って作成した。
5，DNA シークエンス ：今回新たに検出した PCR 産物はすべてクローニングの後 ABI Prism Dye Terminator Cycle Sequencing Kitを用いて配列の解析を行った。
6，定量的 PCR：LightCycler ${ }^{\text {TM }}$ systemを用いて行った。 酵素反応には SYBR Green PCR Master Mixを用いた。 混液比は製品マニュアルに沿って行った。
7，ウェスタンブロッティング法：細胞を $2.5 \% ~ \beta-メ ル カ フ ゚ ト エ タ ノ ー ル を 今 今 む S D S ~ サ ン フ ゚ ル ~$ バッファーで溶解し，ポリアクリルアミドゲルで電気泳動した。PVDF メンブレンに転写後 1次抗体として抗 FLAG M2 モノクロナル抗体と rabbit 抗ヒト WISP1 IgGをそれぞれ使用した。 2 次抗体には HRP 標識した抗マウス IgG，抗ウサギIgGを用い，ECL ${ }^{\text {TM }}$ Western Blotting Detection Reagents で発光させた。

【結果】

1，RT－PCR の結果，SaOS2，HCS－2／8の 2 種の細胞においてCCN4／WISP1，WISP1vの発現が認 められた。 また，HCS－2／8細胞ではWISP1vよりさらに小さいPCR 産物が認められた。こ のPCR 産物はこれまでに報告されていないCCN4／WISP1 のスプライシングバリアントmRNAに由来するものであった。 HUVEC，A371はCCN4／WISP1 mRNA の発現のみを認め，それ以外の細胞株ではPCR 産物は検出されなかった。
2，RGC 細胞でも WISP1vが発現していることが分かった。 また HCS－2／8 細胞で発現が見られ た WISP1vx は RGC 細胞では検出できなかった。
3，RGC 細胞を石灰化するまで長期培羲し，CCN4／WISP1 およびWISPIv の発現を検討した結果， CCN4／WISP1 mRNA は常に発現していたがWISP1v mRNA は石灰化に伴い上昇した。
4，WISP1v および WISP1vx を強制発現させた細胞はともに 2 型コラーゲンとアグリカン mRNA に変動はみられなかったが，WISP1v 強制発現細胞でアルカリフォスファターゼ mRNA が上昇し た。一方WISP1vx では対照と比較して大きな差はなかった。

【結論及び考察】

以上の結果から WISP1v が正常な軟骨細胞の分化，特に石灰化に関与することが強く示唆され た。 一方 CCN4／WISP1 には分化依存的な変動は見られず，軟骨細胞におけるより基本的な生理的機能との関わりが考えられる。新たに発見したWISP1vxについては腫瘍関連形質との関わ りが考えられるが，その詳細は今後の研究課題として残されている。

文春查の結果の要旨

Wnt－signaling inducible secreted protein 1 （WISP1）／CCN4 遺伝子は腪疡細胞において Wnt－signaling pathway下流の β－カテニンにより誘導される遺伝子群のひとつ，WISP1とし て同定された。 しかしその後，遺伝子の構造が似ていることからCCNファミリーという遺伝子群のひとつに分類されるようになった。CCNファミリーの遺伝子の構造はシステインに富むIGFBP，VWC，TSP，CT という 4 つのモジュールで構成されているところが非常に特徴的であり，各モジュールはすべてさまざまな分子と相互作用を持つという性質を有している。 CCNファミリーたんばく質の発揮する多彩な機能は，この特徵的構造と各モジュールの性質 に起因すると考えられている。今回研究対象としたCCN4／WISP1 にはVWC モジュールが欠損するスプライシングバリアント（WISP1v）が存在することが知られているが，WISP1， WISP1vともに正常な組織での生理的機能はまだほとんど研究されていない。

この論文ではCCN4／WISP1 とともにそのスプライシングバリアントであるWISP1vの生理的機能にも焦点を当て一連の解析を行い以下の結論を得た。

1，ヒト骨肉種由来細胞株（SaOS2），ヒト軟骨肉腫由来細胞株（HCS－2／8）の 2 種において CCN4／WISP1，WISP1v の発現が認められた。 また，HCS—2／8細胞ではWISP1vよりさら に小さいPCR 産物が認められた（WISP1vx）。 このPCR 産物はこれまでに報告されていない CCN4／WISP1 のスプライシングバリアントmRNA に由来するものであった。
2，ウサギ肋軟骨由来初代軟骨細胞（RGC）細胞でもWISP1vが発現していた。 これまで WISP $1 v$ が正常細胞で発現していることを碓認した報告はなかったが，今回 WISP $1 v$ が正常細胞で生理的役割を持つ可能性が初めて示された。 また HCS－2／8 細胞で発現が見られた WISP1vx はRGC 細胞では検出できなかった。
3，RGC 細胞で CCN4／WISP1 が常に発現しているのに対し，WISP1vは石灰化に伴い上昇した。 4，WISP1v，WISP1vx 強制発現HCS－2／8 細胞ともに 2 型コラーゲンとアグリカン mRNAに変動はみられなかっだが，WISP1V強制発現HCS－2／8 細胞でアルカリフォスファターゼ mRNA が上昇していた。 一方WISP1vx では対照と比較して大きな差は見られなかった。

以上の結果より WISP1v が正常な軟骨細胞の分化，特に石灰化に関与することが強く示唆 された。一方CCN4／WISP1には分化依存的な変動は見られず，細胞におけるより基本的な生理的機能を持つことが，そして今回新たに発見されたWISP1vxについては喱痬関連形質と の関わりが考えられる。
従って本研究は今後，軟骨組織発生機序の解明や軟骨組織再生に役立つ可能性があり，本申請論文は博士（歯学）の学位論文に値するものと認めた。

