5 research outputs found

    Novel biomarkers distinguishing pancreatic head Cancer from distal cholangiocarcinoma based on proteomic analysis

    No full text
    Abstract Background The differentiation between pancreatic head cancer (PHC) and distal cholangiocarcinoma (DCC) can be challenging because of their anatomical and histopathological similarity. This is an important problem, because the distinction has important implications for the treatment of these malignancies. However, there are no biomarkers for the differential diagnosis of PHC and DCC. The present study aimed to identify novel diagnostic immunohistochemical biomarkers to distinguish PHC from DCC. Methods Liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to detect candidate proteins. Ten PHC and 8 DCC specimens were analyzed by LC-MS/MS. Selected proteins were evaluated, using immunohistochemical analysis, to determine whether they would be appropriate biomarkers. Finally, we generated biomarker panels to improve diagnostic accuracy. We applied these panels to clinically difficult cases (cases in which different diagnoses were made before and after operation). Results Consequently, 1820 proteins were detected using LC-MS/MS. Fifteen differentially expressed proteins were selected as candidates based on semi-quantitative comparison. We first performed immunohistochemical staining on samples from the small cohort group (12 PHCs and 12 DCCs) using 15 candidates. KRT17, ANXA10, TMEM109, PTMS, and ATP1B1 showed favorable performances and were tested in the next large cohort group (72 PHCs and 74 DCCs). Based on immunohistochemical analysis, KRT17 performed best for the diagnosis of PHC as a single marker; additionally, PTMS exhibited good performance for the diagnosis of DCCs. Moreover, we indicated the KRT17+/ANXA10+/PTMS- staining pattern as a biomarker panel for the correct diagnosis of PHC and KRT17−/ANXA10−/PTMS+ for the diagnosis of DCC. After immunohistochemical staining for examining samples from the clinically difficult cases, these panels showed satisfactory diagnostic performance with 85.7% (6/7) accuracy. Conclusions We conclude that 5 proteins and 2 biomarker panels are promising for distinguishing PHC from DCC, and patients with an equivocal diagnosis would benefit from the application of these biomarkers. Confirmatory studies are needed to generalize these findings to other populations

    Reducing the Edge Chipping for Capillary End Face Grinding and Polishing

    Get PDF
    This paper presents results of glass capillary end face grinding and polishing by approach that reduces the edge chipping. Brittle materials have natural tendency for edge chipping what leads to beveling the sharp edges. Not beveled sharp edges on glass capillary are important for special applications like surface tension measurement of small liquid samples. We use common grinding and polishing process for capillary end face machining modified with gradual decreasing of grinding load based on the relation of the critical chipping load. Achieved surface roughness is measured using atomic force microscopy (AFM). Capillary inner edge quality is checked both with optical microscopes and electron microscope too. We achieved a non-chipped capillary inner edge with radius down to 100 nm
    corecore