1,969 research outputs found

    Regulation of elastase and plasminogen activator secretion in resident and inflammatory macrophages by receptors for the Fc domain of immunoglobulin G.

    Get PDF
    We have determined that the interaction of IgG-coated erythrocytes (EIgG) and complement-coated erythrocytes (EIgMC) with macrophage Fc and complement receptors, respectively, modulates the secretion of the neutral proteinases, elastase, and plasminogen activator. EIgG binding and ingestion stimulated secretion of elastase and plasminogen activator less than or equal to 6-fold and 20-fold, respectively, over the 3 d following treatment. Stimulation was dependent on the IgG titer bound to each erythrocyte and was detectable at greater than 6.2 X 10(3) molecules IgG/ erythrocyte (total 0.99 nM IgG in the culture). Cytochalasin B did not inhibit stimulation, indicating that the ingestion of ligands was not necessary. Binding of EIgG to the three subclass-specific Fc receptors (IgG2a, IgG2b/IgG1, IgG3) was effective. Stimulation of elastase secretion required continued exposure of ligands to cells for up to 24 h, whereas production of plasminogen activator, which has plasma membrane-bound forms as well as secreted forms, was stimulated by exposure for 2 h. The stimulated production of elastase and plasminogen activator by triggering Fc receptors was seen only when the initial secretion rates were low. Periodate- or thioglycollate-elicited macrophages, which have high rates of proteinase secretion, were not stimulated further. EIgMC, which are bound but not ingested by resident macrophages, stimulated elastase secretion transiently, and the rate of secretion returned to the control level by 24 h. Therefore, the mode of stimulation of neutral proteinase secretion by complement receptor differed from that of Fc receptor; stimulation by complement receptor possibly involves a limited release of enzyme from intracellular stores, rather than stimulating accelerated synthesis of enzyme. Erythrocytes coated with both complement and IgG showed both the transient increase in elastase typical of complement-mediated secretion and the sustained increase typical of Fc receptor-mediated secretion. These results suggest that macrophage Fc and complement receptors regulate secretion of proteinases by receptor-specific mechanisms

    High-resolution three-dimensional views of membrane-associated clathrin and cytoskeleton in critical-point-dried macrophages.

    Get PDF
    We obtained high-resolution topographical information about the distribution of clathrin and cytoskeletal filaments on cytoplasmic membrane surfaces of macrophages spreading onto glass coverslips by both critical-point drying of broken-open cells and preparation of rotary platinum replicas. Irregular patches of the adherent ventral surface of the plasma membrane were exposed in these cells, and large areas of these exposed membranes were covered with clathrin-coated patches, pits, and vesicles. Various amounts of cytoskeleton were attached to the plasma membranes of these spreading cells, either as distinct starlike foci, or as individual filaments and bundles radiating out from the cytoskeletal meshwork. In newly adherent cells a well developed Golgi-GERL complex, characterized by smooth, dish-like cisternae associated with rough endoplasmic reticulum, was observed. There were many coated vesicles budding off from the Golgi cisternae, and these were predominantly of the large type (150 nm) usually associated with the plasma membrane. In critical-point-dried samples, both cytoskeleton and membranes were preserved in detail comparable to that of quick-frozen samples, after appropriate fixation. Rotary replication of critical-point-dried cells provides a rapid, easily controlled, and generally easy to perform method for obtaining samples of exposed membrane large enough to permit quantification of membrane-associated clathrin and cytoskeleton under various experimental conditions

    Rapid redistribution of clathrin onto macrophage plasma membranes in response to Fc receptor-ligand interaction during frustrated phagocytosis.

    Get PDF
    We have observed increases in assembled clathrin on the plasma membrane during "frustrated phagocytosis," the spreading of macrophages on immobilized immune complexes. Resident macrophages freshly harvested from the peritoneal cavity of mice and attached to bovine serum albumin (BSA)-anti-BSA-coated surfaces at 4 degrees C had almost no clathrin basketworks on their adherent plasma membrane (less than 0.01 coated patch/micron 2), as observed by immunofluorescence, immunoperoxidase, and platinum-carbon replica techniques, although abundant assembled clathrin was observed in the perinuclear Golgi region. When the cells were warmed to 37 degrees C they started to spread by 4 min and reached their maximum extent by 20 min. Spreading preceded clathrin assembly at the plasma membrane. Clathrin-coated patches were first observed on the adherent plasma membrane at 6 min. Between 12 and 20 min assembled clathrin coats appeared on both adherent and nonadherent plasma membranes with a concomitant decrease in identifiable clathrin in the perinuclear region. A new steady state emerged by 2 h, as perinuclear clathrin began to reappear. At 20 min at 37 degrees C the adherent plasma membranes of macrophages spreading on BSA alone had 0.9 coated patch/micron 2, whereas in cells spread on immune complex-coated surfaces, the clathrin patches increased, dependent on ligand concentration, to a maximum of 2.1 coated patches/micron 2. Because frustrated phagocytosis of immune complex-coated surfaces at 37 degrees C increased the area of adherent plasma membrane, the total area coated by clathrin basket-works increased 5-fold (28 micron 2/cell) as compared with cells plated on BSA alone (5.6 micron 2/cell) and 200-fold as compared with cells adhering to immune complexes at 4 degrees C. We then determined that macrophages cultured on BSA-coated coverslips for 24 h already have abundant surface clathrin. When immune complexes were formed by the addition of anti-BSA IgG to already spread macrophages cultured on BSA-coated coverslips for 24 h, clathrin assembled at the sites of ligand-receptor interaction even at 4 degrees C, before spreading, and a 2.6-fold increase in assembled clathrin was observed on the adherent plasma membrane of cells on immune complexes as compared with cells on BSA alone. Clathrin was reversibly redistributed to the Golgi region, returning to the steady state by 2 h.(ABSTRACT TRUNCATED AT 400 WORDS

    Heun's equation, generalized hypergeometric function and exceptional Jacobi polynomial

    Full text link
    We study Heun's differential equation in the case that one of the singularities is apparent. In particular we conjecture a relationship with generalized hypergeometric differential equation and establish it in some cases. We apply our results to exceptional Jacobi polynomials.Comment: 15 pages; validity of the conjecture was extende

    Particle Propagator of Spin Calogero-Sutherland Model

    Full text link
    Explicit-exact expressions for the particle propagator of the spin 1/2 Calogero-Sutherland model are derived for the system of a finite number of particles and for that in the thermodynamic limit. Derivation of the expression in the thermodynamic limit is also presented in detail. Combining this result with the hole propagator obtained in earlier studies, we calculate the spectral function of the single particle Green's function in the full range of the energy and momentum space. The resultant spectral function exhibits power-law singularity characteristic to correlated particle systems in one dimension.Comment: 43 pages, 6 figure

    Detecting Drowsy Learners at the Wheel of e-Learning Platforms with Multimodal Learning Analytics

    Get PDF
    Learners are expected to stay wakeful and focused while interacting with e-learning platforms. Although wakefulness of learners strongly relates to educational outcomes, detecting drowsy learning behaviors only from log data is not an easy task. In this study, we describe the results of our research to model learners’ wakefulness based on multimodal data generated from heart rate, seat pressure, and face recognition. We collected multimodal data from learners in a blended course of informatics and conducted two types of analysis on them. First, we clustered features based on learners’ wakefulness labels as generated by human raters and ran a statistical analysis. This analysis helped us generate insights from multimodal data that can be used to inform learner and teacher feedback in multimodal learning analytics. Second, we trained machine learning models with multiclass-Support Vector Machine (SVM), Random Forest (RF) and CatBoost Classifier (CatBoost) algorithms to recognize learners’ wakefulness states automatically. We achieved an average macro-F1 score of 0.82 in automated user-dependent models with CatBoost. We also showed that compared to unimodal data from each sensor, the multimodal sensor data can improve the accuracy of models predicting the wakefulness states of learners while they are interacting with e-learning platforms

    Comparative study of macroscopic quantum tunneling in Bi_2Sr_2CaCu_2O_y intrinsic Josephson junctions with different device structures

    Get PDF
    We investigated macroscopic quantum tunneling (MQT) of Bi2_2Sr2_2CaCu2_2Oy_y intrinsic Josephson junctions (IJJs) with two device structures. One is a nanometer-thick small mesa structure with only two or three IJJs and the other is a stack of a few hundreds of IJJs on a narrow bridge structure. Experimental results of switching current distribution for the first switching events from zero-voltage state showed a good agreement with the conventional theory for a single Josephson junction, indicating that a crossover temperature from thermal activation to MQT regime for the former device structure was as high as that for the latter device structure. Together with the observation of multiphoton transitions between quantized energy levels in MQT regime, these results strongly suggest that the observed MQT behavior is intrinsic to a single IJJ in high-TcT_c cuprates, independent of device structures. The switching current distribution for the second switching events from the first resistive state, which were carefully distinguished from the first switchings, was also compared between two device structures. In spite of the difference in the heat transfer environment, the second switching events for both devices were found to show a similar temperature-independent behavior up to a much higher temperature than the crossover temperature for the first switching. We argue that it cannot be explained in terms of the self-heating owing to dissipative currents after the first switching. As possible candidates, the MQT process for the second switching and the effective increase of electronic temperature due to quasiparticle injection are discussed.Comment: 10pages, 7figures, submitted to Phys. Rev.

    On polynomial solutions of Heun equation

    Full text link
    By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, - \s/x, is also amenable for polynomial solutions.Comment: 4 pages, No figur

    Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid

    Get PDF
    © The Electrochemical Society, Inc. 2009. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version is available at the link below.Despite many researches over the last half century, the mechanism of ac powder electroluminescence remains to be fully elucidated and, to this end, a better understanding of the relatively complex structure of alternate current electroluminescence (ACEL) phosphors is required. Consequently, the structure and morphology of ZnS:Cu,Cl phosphor powders have been investigated herein by means of scanning electron microscopy (SEM) on hydrochloric acid-etched samples and X-ray powder diffraction. The latter technique confirmed that, as a result of two-stage firing during their synthesis, the phosphors were converted from the high temperature hexagonal (wurtzite) structure to the low temperature cubic (sphalerite) polymorph having a high density of planar stacking faults. Optical microscopy revealed that the crystal habit of the phosphor had the appearance of the hexagonal polymorph, which can be explained by the sphalerite pseudomorphing of the earlier wurtzite after undergoing the hexagonal to cubic phase transformation during the synthesis. SEM micrographs of the hydrochloric-etched phosphor particles revealed etch pits, a high density of planar stacking faults along the cubic [111] axis, and the pyramids on the (111) face. These observations were consistent with unidirectional crystal growth originating from the face showing the pyramids.EPSRC, DTI, and the Technology Strategy Board-led Technology Program
    corecore