35 research outputs found

    Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning.

    Get PDF
    Many studies have confirmed the time-limited involvement of the hippocampus in mnemonic processes and suggested that there is reorganization of the responsible brain circuitry during memory consolidation. To clarify such reorganization, we chose trace classical eyeblink conditioning, in which hippocampal ablation produces temporally graded retrograde amnesia. Here, we extended the temporal characterization of retrograde amnesia to other regions that are involved in acquisition during this task: the medial prefrontal cortex (mPFC) and the cerebellum. At a various time interval after establishing the trace conditioned response (CR), rats received an aspiration of one of the three regions. After recovery, the animals were tested for their CR retention. When ablated 1 d after the learning, both the hippocampal lesion and the cerebellar lesion group of rats exhibited a severe impairment in retention of the CR, whereas the mPFC lesion group showed only a slight decline. With an increase in interval between the lesion and the learning, the effect of the hippocampal lesion diminished and that of the mPFC lesion increased. When ablated 4 weeks after the learning, the hippocampal lesion group exhibited as robust CRs as its corresponding control group. In contrast, the mPFC lesion and the cerebellar lesion groups failed to retain the CRs. These results indicate that the hippocampus and the cerebellum, but only marginally the mPFC, constitute a brain circuitry that mediates recently acquired memory. As time elapses, the circuitry is reorganized to use mainly the mPFC and the cerebellum, but not the hippocampus, for remotely acquired memory

    NMDA receptor-dependent processes in the medial prefrontal cortex are important for acquisition and the early stage of consolidation during trace, but not delay eyeblink conditioning.

    Get PDF
    Permanent lesions in the medial prefrontal cortex (mPFC) affect acquisition of conditioned responses (CRs) during trace eyeblink conditioning and retention of remotely acquired CRs. To clarify further roles of the mPFC in this type of learning, we investigated the participation of the mPFC in mnemonic processes both during and after daily conditioning using local microinfusion of the GABA(A) receptor agonist muscimol or the NMDA receptor antagonist APV into the rat mPFC. Muscimol infusions into the mPFC before daily conditioning significantly retarded CR acquisition and reduced CR expression if applied after sufficient learning. APV infusion also impaired acquisition of CRs, but not expression of well-learned CRs. When infusions were made immediately after daily conditioning, acquisition of the CR was partially impaired in both the muscimol and APV infusion groups. In contrast, rats that received muscimol infusions 3 h after daily conditioning exhibited improvement in their CR performance comparable to that of the control group. Both the pre- and post-conditioning infusion of muscimol had no effect on acquisition in the delay paradigm. These results suggest that the mPFC participates in both acquisition of a CR and the early stage of consolidation of memory in trace, but not delay eyeblink conditioning by NMDA receptor-mediated operations

    Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning.

    Get PDF
    The importance of the hippocampus in declarative memory is limited to recently acquired memory, and remotely acquired memory is believed to be stored somewhere in the neocortex. However, it remains unknown how the memory network is reorganized from a hippocampus-dependent form into a neocortex-dependent one. We reported previously that the medial prefrontal cortex (mPFC) is important for this neocortex-dependent remote memory in rat trace eyeblink conditioning. Here, we investigate the involvement of NMDA receptors in the mPFC in this reorganization and determine the time window of their contribution using chronic infusion of an antagonist into the mPFC, specifically during the postlearning consolidation period. The rats with blockade of the mPFC NMDA receptors during the first 1 or 2 weeks after learning showed a marked impairment in memory retention measured 6 weeks after learning, but relearned normally with subsequent conditioning. In contrast, the same treatment had no effect if it was performed during the third to fourth weeks or during the first day just after learning. The specificity of NMDA receptor blockade was confirmed by the reduced long-term potentiation in the hippocampal-prefrontal pathway in these rats. These results suggest that successful establishment of remotely acquired memory requires activation of NMDA receptors in the mPFC during at least the initial week of the postlearning period. Such NMDA receptor-dependent processes may mediate the maturation of neocortical networks that underlies permanent memory storage and serve as a way to reorganize memory circuitry to the neocortex-dependent form

    The N-methyl-D-aspartate (NMDA)-type glutamate receptor GluRepsilon2 is important for delay and trace eyeblink conditioning in mice.

    Get PDF
    It has been proposed that the N-methyl-d-aspartate (NMDA)-type glutamate receptor (GluR) plays an important role in synaptic plasticity, learning, and memory. The four GluRepsilon (NR2) subunits, which constitute NMDA receptors with a GluRzeta (NR1) subunit, differ both in their expression patterns in the brain and in their functional properties. In order to specify the distinct participation of each of these subunits, we focused on the GluRepsilon2 subunits, which are expressed mainly in the forebrain. We investigated delay and trace eyeblink conditioning in GluRepsilon2 heterozygous mutant mice whose content of GluRepsilon2 protein was decreased to about half of that in wild-type mice. GluRepsilon2 mutant mice exhibited severe impairment of the attained level of conditioned response (CR) in the delay paradigm, for which the cerebellum is essential and modulation by the forebrain has been suggested. Moreover, GluRepsilon2 mutant mice showed no trend toward CR acquisition in the trace paradigm with a trace interval of 500 ms, in which the forebrain is critically involved in successful learning. On the other hand, the reduction of GluRepsilon2 proteins did not disturb any basic sensory and motor functions which might have explained the observed impairment. These results are different from those obtained with GluRepsilon1 null mutant mice, which attain a normal level of the CR but at a slower rate in the delay paradigm, and showed a severe impairment in the trace paradigm. Therefore, the NMDA receptor GluRepsilon2 plays a more critical role than the GluRepsilon1 subunit in classical eyeblink conditioning

    鹿児島県における魚介類の利用の実態調査 : 地域による魚介類の使用状況と調理方法(自然科学編)

    Get PDF
    平成15・16年度日本調理科学会特別研究「調理文化の地域性と調理科学-魚介類の調理」の一環で,漁港を有し漁業が盛んな地域,農村米作地域及び都市部の中から9地域100人を対象に,各地域で食べられている魚介類の種類とその調理方法等を,アンケートと聞き取り調査によって調べたので報告する.魚の使用種類は,ほとんどの地域であじがトップを占めていたが,枕崎市はかつお,種子島の西之表市はきびなご,とびうお,鹿屋市はかんぱちであった.海に囲まれた甑島の里村では,極端に魚種が少なく,調理方法も単純であった.調理方法は,なま物(刺身)がトップを占め,次いで焼き物(塩焼き),煮物(鍋物を含む),揚げ物(フライ,てんぷら)がどの地域にも多くみられた.枕崎市には「かつおのびんた料理(頭の塩煮)」等かつおをすべて無駄なく創意工夫した多くの料理がある.また,きびなごはあご,さばに次いでよく食べられており,「きびなごときらす(おから)のおっけ」は普及したい伝承料理の一品である.さらに,豊富にとれる魚(とびうお,小あじ,いわし等)を使用し,風土に適する保存料理として考案されたつけ揚げ(さつま揚げ)など多くの魚介類料理がある

    Prefrontal neuronal ensembles link prior knowledge with novel actions during flexible action selection

    No full text
    Summary: We make decisions based on currently perceivable information or an internal model of the environment. The medial prefrontal cortex (mPFC) and its interaction with the hippocampus have been implicated in the latter, model-based decision-making; however, the underlying computational properties remain incompletely understood. We have examined mPFC spiking and hippocampal oscillatory activity while rats flexibly select new actions using a known associative structure of environmental cues and outcomes. During action selection, the mPFC reinstates representations of the associative structure. These awake reactivation events are accompanied by synchronous firings among neurons coding the associative structure and those coding actions. Moreover, their functional coupling is strengthened upon the reactivation events leading to adaptive actions. In contrast, only cue-coding neurons improve functional coupling during hippocampal sharp wave ripples. Thus, the lack of direct experience disconnects the mPFC from the hippocampus to independently form self-organized neuronal ensemble dynamics linking prior knowledge with novel actions
    corecore