28 research outputs found

    Effects of attentional bias modification on chronic low back pain in older outpatients

    Get PDF
    Objectives: In the present study, the effect of attentional bias modification (ABM) on older outpatients, with chronic low back pain, was examined.Design: This was a single-center, randomized, single-blinded, crossover trial and patients were randomly divided in a 1:1 allocation ratio into two groups: an ABM Leading group and an ABM Trailing group.Participants: Forty-three outpatients with chronic low back pain participated.Interventions: Patients were evaluated four times and the treatments were ABM + Normal intervention or Normal intervention only.Outcomes: Outcome measures included pain intensity on the Numerical Rating Scale, the Pain Catastrophizing Scale, Fear-Avoidance Beliefs Questionnaire, Hospital Anxiety and Depression Scale, Somatic Symptom Scale-8, and EuroQol 5 Dimension-3 levels questionnaire. In addition, we performed the 30-second Chair-Stand test and the Timed Up & Go test for physical function evaluations.Results: There was no change in pain intensity due to ABM. However, the total Pain Catastrophizing Scale score was significantly decreased, and the EuroQol 5 Dimension-3 levels questionnaire and 30-second chair-stand test were significantly improved (P <.05).Trial registration: The Health Science Ethics Committee, Graduate School of Biomedical Sciences, Nagasaki University (permit number: 17060861), and the clinical trial was registered with UMIN (UMIN000029424)

    Continuous Repetition Motor Imagery Training and Physical Practice Training Exert the Growth of Fatigue and Its Effect on Performance

    Get PDF
    Continuous repetition of motor imagery leads to mental fatigue. This study aimed to examine whether fatigue caused by motor imagery training affects improvement in performance and the change in corticospinal excitability. The participants were divided into “physical practice training” and “motor imagery training” groups, and a visuomotor task (set at 50% of maximal voluntary contraction in participants) was performed to assess the training effect on fatigue. The measurements were recorded before and after training. Corticospinal excitability at rest was measured by transcranial magnetic stimulation according to the Neurophysiological Index. Subjective mental fatigue and muscle fatigue were assessed by using the visual analog scale and by measuring the pinch force, respectively. Additionally, the error area was evaluated and calculated at pre-, mid-, and post-terms after training, using a visuomotor task. After training, muscle fatigue, subjective mental fatigue, and decreased corticospinal excitability were noted in both of the groups. Moreover, the visuomotor task decreased the error area by training; however, there was no difference in the error area between the mid- and post-terms. In conclusion, motor imagery training resulted in central fatigue by continuous repetition, which influenced the improvement in performance in the same manner as physical practice training

    Comparing movement-related cortical potential between real and simulated movement tasks from an ecological validity perspective

    Get PDF
    IntroductionConcerns regarding the ecological validity of movement-related cortical potential (MRCP) experimental tasks that are related to motor learning have recently been growing. Therefore, we compared MRCP during real movement task (RMT) and simulated movement task (SMT) from an ecological validity perspective.MethodsThe participants performed both RMT and SMT, and MRCP were measured using electroencephalogram (EEG). EEG was based on the 10-20 method, with electrodes placed in the motor cortex (C3 and C4) and supplementary motor cortex (FCz [between Fz and Cz] and Cz) areas. This experiment examined the MRCP using Bereitschaftspotential (BP) and negative slope (NS’) onset times, and BP, NS’, and motor potential (MP) amplitudes during the task.ResultsThe results revealed that the SMT exhibited later BP and NS’ onset times and smaller BP, NS’, and MP amplitudes than the RMT. Furthermore, in RMT, the onset time of MRCP was delayed, and the amplitude of MRCP was smaller in the second half of the 200 times task than in the first half, whereas in SMT, there was no change in onset time and amplitude. The SMT showed a different MRCP than the RMT, suggesting that the ecological validity of the task should be fully considered when investigating the cortical activity associated with motor skill learning using MRCP.ConclusionEcological validity of the study should be fully considered when investigating the cortical activity associated with motor skill learning using MRCP. Moreover, it is important to understand the differences between the two methods when applied clinically

    Associations between Optimism and Attentional Biases as Measured by Threat-Avoidance and Positive-Search Tasks

    Get PDF
    Evidence suggests that optimism has a positive impact on health status. Attentional bias modification (ABM) may be beneficial for enhancing optimism, but its effective application requires a detailed investigation of the association between attentional bias and optimism. This study aimed to determine the association between attentional bias and optimism based on different task types. Eighty-four participants completed the attentional bias measures using the dot-probe task (DPT), emotional visual search task (EVST) paradigms, and psychological assessments. Optimism was assessed using the Life Orientation Test-Revised with subscales for optimism and pessimism. Pearson’s correlation coefficient and multivariate linear regression analysis were applied to investigate the association between optimism and attentional bias. Neither the attentional bias derived from DPT nor EVST was significantly correlated with optimism total score or subscales. Regression analysis also showed no association between attentional bias and optimism (DPT, β = 0.12; EVST, β = 0.09), optimism subscales (DPT, β = 0.09; EVST, β = 0.17), or pessimism subscales (DPT, β = −0.10; EVST, β = 0.02). Our findings showed no evidence that attentional biases derived from either the DPT or EVST measures are associated with optimism or pessimism. Further studies are needed to effectively adapt the ABM to enhance optimism

    Excitability of the Primary Motor Cortex Increases More Strongly with Slow- than with Normal-Speed Presentation of Actions

    Get PDF
    Introduction: The aim of the present study was to investigate how the speed of observed action affects the excitability of the primary motor cortex (M1), as assessed by the size of motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS). Copyright:Methods: Eighteen healthy subjects watched a video clip of a person catching a ball, played at three different speeds (normal-, half-, and quarter-speed). MEPs were induced by TMS when the model\u27s hand had opened to the widest extent just before catching the ball ("open") and when the model had just caught the ball ("catch"). These two events were locked to specific frames of the video clip ("phases"), rather than occurring at specific absolute times, so that they could easily be compared across different speeds. MEPs were recorded from the thenar (TH) and abductor digiti minimi (ADM) muscles of the right hand.Results: The MEP amplitudes were higher when the subjects watched the video clip at low speed than when they watched the clip at normal speed. A repeated-measures ANOVA, with the factor VIDEO-SPEED, showed significant main effects. Bonferroni\u27s post hoc test showed that the following MEP amplitude differences were significant: TH, normal vs. quarter; ADM, normal vs. half; and ADM, normal vs. quarter. Paired t-tests showed that the significant MEP amplitude differences between TMS phases under each speed condition were TH, "catch" higher than "open" at quarter speed; ADM, "catch" higher than "open" at half speed.Conclusions: These results indicate that the excitability of M1 was higher when the observed action was played at low speed. Our findings suggest that the action observation system became more active when the subjects observed the video clip at low speed, because the subjects could then recognize the elements of action and intention in others

    Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals

    Get PDF
    Introduction Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. Methods We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touchscreen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touchscreen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman\u27s rank correlations. Results Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. Conclusions We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress

    Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity

    Get PDF
    Motor imagery is defined as an act wherein an individual contemplates a mental action of motor execution without apparent action. Mental practice executed by repetitive motor imagery can improve motor performance without simultaneous sensory input or overt output. We aimed to investigate cerebral hemodynamics during motor imagery and motor execution of a self-feeding activity using chopsticks. This study included 21 healthy right-handed volunteers. The self-feeding activity task comprised either motor imagery or motor execution of eating sliced cucumber pickles with chopsticks to examine eight regions of interest: pre-supplementary motor area, supplementary motor area, bilateral prefrontal cortex, premotor area, and sensorimotor cortex. The mean oxyhemoglobin levels were detected using near-infrared spectroscopy to reflect cerebral activation. The mean oxyhemoglobin levels during motor execution were significantly higher in the left sensorimotor cortex than in the supplementary motor area and the left premotor area. Moreover, significantly higher oxyhemoglobin levels were detected in the supplementary motor area and the left premotor area during motor imagery, compared to motor execution. Supplementary motor area and premotor area had important roles in the motor imagery of self-feeding activity. Moreover, the activation levels of the supplementary motor area and the premotor area during motor execution and motor imagery are likely affected by intentional cognitive processes. Levels of cerebral activation differed in some areas during motor execution and motor imagery of a self-feeding activity. This study was approved by the Ethical Review Committee of Nagasaki University (approval No. 18110801) on December 10, 2018
    corecore