484 research outputs found
地上設置型フーリエ変換赤外分光計を用いた大気中HFC-23のリトリーバル手法の開発に関する研究
Tohoku University中島英彰課
Complete temporal mode characterization of non-Gaussian states by dual homodyne measurement
Optical quantum states defined in temporal modes, especially non-Gaussian
states like photon-number states, play an important role in quantum computing
schemes. In general, the temporal-mode structures of these states are
characterized by one or more complex functions called temporal-mode functions
(TMFs). Although we can calculate TMF theoretically in some cases, experimental
estimation of TMF is more advantageous to utilize the states with high purity.
In this paper, we propose a method to estimate complex TMFs. This method can be
applied not only to arbitrary single-temporal-mode non-Gaussian states but also
to two-temporal-mode states containing two photons. This method is implemented
by continuous-wave (CW) dual homodyne measurement and doesn't need prior
information of the target states nor state reconstruction procedure. We
demonstrate this method by analyzing several experimentally created
non-Gaussian states
Electromagnetic Simulation for THz Antenna-Coupled Microbolometers Operated at Room Temperature
Room-temperature terahertz (THz) detectors with higher performance are necessary for utilizing the THz wave in various sensing, spectroscopy and imaging, but even the best ones in the present are still insufficient for the practical applications. This issue is essential especially in the region around 1 THz at which there exists a large technology gap between microwave and middle-infrared. Therefore, we study to develop an antenna-coupled microbolometer to achieve a high-performance THz detector operated at a room-temperature for sensing at around 1 THz frequency wave. In this paper, we present several important features and results obtained from electromagnetic simulations, which help to design a structure of the antenna and heater to absorb efficiently the power of THz wave
Rab13 Is Involved in the Entry Step of Hepatitis C Virus Infection
Membrane transport probably participates in the lifecycle of hepatitis C virus (HCV). Rab proteins are essential host factors for HCV RNA replication, but these proteins’ roles in other steps of the HCV lifecycle are not clear. The tight junction (TJ) plays a key role in HCV infection. Rab13 regulates the endocytic recycling of the TJ-associated proteins. Here we investigated whether Rab13 is involved in the HCV entry step. We used HuH-7-derived RSc cells and Li23-derived D7 cells. To evaluate the effect of Rab13 in HCV infection, we transfected the cells with siRNA targeting Rab13 before HCV infection. The down-regulation of Rab13 inhibited HCV infection. The D7 cells had showed a greater inhibitory effect against HCV infection compared to that in the RSc cells by Rab13 knockdown. Next, to evaluate the effect of Rab13 after infection, we inoculated the cells with HCV before transfection of the siRNA. The down-regulation of Rab13 did not show any effects after HCV infection. We further examined whether Rab13 would influence HCV RNA replication by using HCV replicon-harboring cells. The results revealed that Rab13 did not affect the step of HCV RNA replication. These results suggest that Rab13 plays an important role in the step of HCV entry
Interactions between p27 and p88 replicase proteins of Red clover necrotic mosaic virus play an essential role in viral RNA replication and suppression of RNA silencing via the 480-kDa viral replicase complex assembly
AbstractRed clover necrotic mosaic virus (RCNMV), a positive-sense RNA virus with a bipartite genome, encodes p27 and p88 replicase proteins that are required for viral RNA replication and suppression of RNA silencing. In this study, we indentified domains in p27 and p88 responsible for their protein–protein interactions using in vitro pull-down assays with the purified recombinant proteins. Coimmunoprecipitation analysis in combination with blue-native polyacrylamide gel electrophoresis using mutated p27 proteins showed that both p27–p27 and p27–p88 interactions are essential for the formation of the 480-kDa complex, which has RCNMV-specific RNA-dependent RNA polymerase activity. Furthermore, we found a good correlation between the accumulated levels of the 480-kDa complex and replication levels and the suppression of RNA silencing activity. Our results indicate that interactions between RCNMV replicase proteins play an essential role in viral RNA replication and in suppressing RNA silencing via the 480-kDa replicase complex assembly
Electromagnetic Simulation for THz Antenna-Coupled Microbolometers Operated at Room Temperature
Room-temperature terahertz (THz) detectors with higher performance are necessary for utilizing the THz wave in various sensing, spectroscopy and imaging, but even the best ones in the present are still insufficient for the practical applications. This issue is essential especially in the region around 1 THz at which there exists a large technology gap between microwave and middle-infrared. Therefore, we study to develop an antenna-coupled microbolometer to achieve a high-performance THz detector operated at a room-temperature for sensing at around 1 THz frequency wave. In this paper, we present several important features and results obtained from electromagnetic simulations, which help to design a structure of the antenna and heater to absorb efficiently the power of THz wave.Keywords: detector, dipole antenna, electromagnetic simulation, microbolometer, terahertz (THz
- …