163 research outputs found

    The Role of RSV Infection in Asthma Initiation and Progression: Findings in a Mouse Model

    Get PDF
    Respiratory syncytial virus (RSV) is a common cause of severe lower respiratory tract diseases (bronchiolitis and pneumonia) during infancy and early childhood. There is increasing evidence which indicates that severe pulmonary disease caused by RSV infection in infancy is associated with recurrent wheezing and development of asthma later in childhood. However, the underlying mechanisms linking RSV infection to persistent airway hyperresponsiveness and dysfunction are not fully defined. To study these processes in ways which are not available in humans, animal models have been established and have provided valuable insight into the pathophysiology of RSV-induced disease. In this paper, we discuss experimental models of RSV infection in mice and highlight a new investigative approach in which mice are initially infected as neonates and then reinfected later in life. The findings shed light on the mechanisms underlying the association between early severe RSV infection and development of asthma later in childhood

    Role of gammadelta T cells in protecting normal airway function

    Get PDF
    Since their discovery 15 years ago, the role of γδ T cells has remained somewhat elusive. Responses of γδ T cells have been found in numerous infectious and non-infectious diseases. New evidence points to γδ T cells' functioning in the airways to maintain normal airway responsiveness or tone. In the lung, distinct subsets of γδ T cell subsets seem to have specific roles, one subset promoting allergic inflammation, the other serving a protective role

    Essential role of Notch signaling in effector memory CD8+ T cell–mediated airway hyperresponsiveness and inflammation

    Get PDF
    Adoptive transfer of in vivo–primed CD8+ T cells or in vitro–generated effector memory CD8+ T (TEFF) cells restores airway hyperresponsiveness (AHR) and airway inflammation in CD8-deficient (CD8−/−) mice. Examining transcription levels, there was a strong induction of Notch1 in TEFF cells compared with central memory CD8+ T cells. Treatment of TEFF cells with a γ-secretase inhibitor (GSI) strongly inhibited Notch signaling in these cells, and after adoptive transfer, GSI-treated TEFF cells failed to restore AHR and airway inflammation in sensitized and challenged recipient CD8−/− mice, or to enhance these responses in recipient wild-type (WT) mice. These effects of GSI were also associated with increased expression of the Notch ligand Delta1 in TEFF cells. Treatment of sensitized and challenged WT mice with Delta1-Fc resulted in decreased AHR and airway inflammation accompanied by higher levels of interferon γ in bronchoalveolar lavage fluid. These results demonstrate a role for Notch in skewing the T cell response from a T helper (Th)2 to a Th1 phenotype as a consequence of the inhibition of Notch receptor activation and the up-regulation of the Notch ligand Delta1. These data are the first to show a functional role for Notch in the challenge phase of CD8+ T cell–mediated development of AHR and airway inflammation, and identify Delta1 as an important regulator of allergic airway inflammation

    Clinical activity of ASP8273 in Asian patients with non‐small‐cell lung cancer with EGFR activating and T790M mutations

    Get PDF
    Epidermal growth factor receptor (EGFR)‐activating mutations confer sensitivity to tyrosine kinase inhibitor (TKI) treatment for non‐small‐cell lung cancer (NSCLC). ASP8273 is a highly specific, irreversible, once‐daily, oral, EGFR TKI that inhibits both activating and resistance mutations. This ASP8273 dose‐escalation/dose‐expansion study (NCT02192697) was undertaken in two phases. In phase I, Japanese patients (aged ≥20 years) with NSCLC previously treated with ≥1 EGFR TKI received escalating ASP8273 doses (25‐600 mg) to assess safety/tolerability and to determine the maximum tolerated dose (MTD) and/or the recommended phase II dose (RP2D) by the Bayesian Continual Reassessment Method. In phase II, adult patients with T790M‐positive NSCLC in Japan, Korea, and Taiwan received ASP8273 at RP2D to further assess safety/tolerability and determine antitumor activity, which was evaluated according to Simon's two‐stage design (threshold response = 30%, expected response = 50%, α = 0.05, β = 0.1). Overall, 121 (n = 45 [33W/12M] phase I, n = 76 [48W/28M]) phase 2) patients received ≥1 dose of ASP8273. In phase I, RP2D and MTD were established as 300 and 400 mg, respectively. As 27 of the 63 patients treated with ASP8273 300 mg achieved a clinical response, ASP8273 was determined to have antitumor activity. The overall response rate at week 24 in all patients was 42% (n = 32/76; 95% confidence interval, 30.9‐54.0). Median duration of progression‐free survival was 8.1 months (95% confidence interval, 5.6, upper bound not reached). The most commonly reported treatment‐related adverse event in phase II was diarrhea (57%, n = 43/76). ASP8273 300 mg was generally well tolerated and showed antitumor activity in Asian patients with both EGFR‐activating and T790M mutations

    Hypofractionated Stereotactic Radiotherapy (HypoFXSRT) for Stage I Non-small Cell Lung Cancer: Updated Results of 257 Patients in a Japanese Multi-institutional Study

    Get PDF
    IntroductionHypofractionated stereotactic radiotherapy (HypoFXSRT) has recently been used for the treatment of small lung tumors. We retrospectively analyzed the treatment outcome of HypoFXSRT for stage I non-small cell lung cancer (NSCLC) treated in a Japanese multi-institutional study.MethodsThis is a retrospective study to review 257 patients with stage I NSCLC (median age, 74 years: 164 T1N0M0, 93 T2N0M0) were treated with HypoFXSRT alone at 14 institutions. Stereotactic three-dimensional treatment was performed using noncoplanar dynamic arcs or multiple static ports. A total dose of 18 to 75 Gy at the isocenter was administered in one to 22 fractions. The median calculated biological effective dose (BED) was 111 Gy (range, 57–180 Gy) based on α/β = 10.ResultsDuring follow-up (median, 38 months), pulmonary complications of above grade 2 arose in 14 patients (5.4%). Local progression occurred in 36 patients (14.0%), and the local recurrence rate was 8.4% for a BED of 100 Gy or more compared with 42.9% for less than 100 Gy (p< 0.001). The 5-year overall survival rate of medically operable patients was 70.8% among those treated with a BED of 100 Gy or more compared with 30.2% among those treated with less than 100 Gy (p< 0.05).ConclusionsAlthough this is a retrospective study, HypoFXSRT with a BED of less than 180 Gy was almost safe for stage I NSCLC, and the local control and overall survival rates in 5 years with a BED of 100 Gy or more were superior to the reported results for conventional radiotherapy. For all treatment methods and schedules, the local control and survival rates were better with a BED of 100 Gy or more compared with less than 100 Gy. HypoFXSRT is feasible for curative treatment of patients with stage I NSCLC

    Vandetanib is effective in EGFR-mutant lung cancer cells with PTEN deficiency

    Get PDF
    The effectiveness of vandetanib, an agent that targets RET, VEGFR and EGFR signaling, against EGFR-mutant lung cancer cells with PTEN loss was investigated. Two EGFR mutant non-small cell lung cancer (NSCLC) cell lines, PC-9 (PTEN wild type) and NCI-H1650 (PTEN null), were used. We transfected an intact FTEN gene into H1650 cells and knocked down PTEN expression in PC-9 cells using shRNA. The effectiveness of gefitinib and vandetanib was assessed using a xenograft model. While PC-9 cells were more resistant to vandetanib than gefitinib, H1650 cells were more sensitive to vandetanib than gefitinib. Both gefitinib and vandetanib suppressed the activation of EGFR and MAPK in H1650 cells, although phosphorylated AKT levels were not affected. In an H1650 cell xenograft model, vandetanib was also more effective than gefitinib. Although PTEN-transfected H1650 cells did not show restoration of sensitivity to gefitinib in vitro, the xenograft tumors responded to gefitinib and vandetanib. Knockdown of PTEN in PC-9 cells caused resistance to gefitinib. In conclusion, vandetanib might be effective in NSCLC with EGFR mutations that lack FTEN expression. The contribution of PTEN absence to vandetanib activity in NSCLC cells harboring EGFR mutations should be further examined

    Species identification, antifungal susceptibility, and clinical feature association of Aspergillus section Nigri isolates from the lower respiratory tract

    Get PDF
    Species of Aspergillus section Nigri are generally identified by molecular genetics approaches, whereas in clinical practice, they are classified as A. niger by their morphological characteristics. This study aimed to investigate whether the species of Aspergillus section Nigri isolated from the respiratory tract vary depending on clinical diagnosis. Forty-four Aspergillus section Nigri isolates isolated from the lower respiratory tracts of 43 patients were collected from February 2012 to January 2017 at the National Hospital Organization (NHO) Tokyo National Hospital. Species identification was carried out based on β-tubulin gene analysis. Drug susceptibility tests were performed according to the Clinical and Laboratory Standards Institute (CLSI) M38 3rd edition, and the clinical characteristics were retrospectively reviewed. A. welwitschiae was isolated most frequently, followed by A. tubingensis. More than half of the A. tubingensis isolates exhibited low susceptibility to azoles in contrast to only one A. welwitschiae isolate. Approximately three quarters of the patients from whom A. welwitschiae was isolated were diagnosed with colonization, whereas more than half the patients from whom A. tubingensis was isolated were diagnosed with chronic pulmonary aspergillosis (CPA). More attention needs to be given to the drug choice for patients with CPA with Aspergillus section Nigri infection because A. tubingensis, which was found to be frequently azole-resistant, was the most prevalent in these patients
    corecore