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Abstract (195 � 200 words) 

The effectiveness of vandetanib, an agent that targets RET, VEGFR and EGFR signaling, 

against EGFR-mutant lung cancer cells with PTEN loss was investigated. Two EGFR mutant 
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non-small cell lung cancer (NSCLC) cell lines, PC-9 (PTEN wild type) and NCI-H1650 

(PTEN null), were used. We transfected an intact PTEN gene into H1650 cells and knocked 

down PTEN expression in PC-9 cells using shRNA. The effectiveness of gefitinib and 

vandetanib was assessed using a xenograft model. While PC-9 cells were more resistant to 

vandetanib than to gefitinib, H1650 cells were more sensitive to vandetanib than to gefitinib. 

Both gefitinib and vandetanib suppressed the activation of EGFR and MAPK in H1650 cells, 

although phosphorylated AKT levels were not affected. In an H1650 cell xenograft model, 

vandetanib was also more effective than gefitinib. Although PTEN-transfected H1650 cells 

did not show restoration of sensitivity to gefitinib in vitro, the xenograft tumors responded to 

gefitinib and vandetanib. Knockdown of PTEN in PC-9 cells caused resistance to gefitinib. In 

conclusion, vandetanib might be effective in NSCLC with EGFR mutations and that lack 

PTEN expression. The contribution of PTEN absence to vandetanib activity in NSCLC cells 

harboring EGFR mutations should be further examined. 

 

Highlights (3 to 5 bullet points) 

� Vandetanib is effective against EGFR mutant lung cancer cell lines without 

PTEN. 

� PTEN restoration causes sensitization to gefitinib in vivo, but not in vitro. 

� PTEN ablation leads to resistance to gefitinib in vitro. 
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Introduction  

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that acts as a mediator 

of cell proliferation and survival signaling. The EGFR gene is frequently mutated in 

non-small cell lung cancer (NSCLC) with an adenocarcinoma histology in never smokers, 

particularly in Asians [1]. EGFR-activating mutations lead to so-called “oncogene addiction”, 

a state in which a cancer cell is dependent on continued activation of a specific gene to retain 

a malignant phenotype [2]. Mutations often predict a dramatic response to EGFR tyrosine 

kinase inhibitors (TKIs) such as gefitinib and erlotinib [3-5]. The majority of EGFR mutant 

lung cancers that are initially sensitive to EGFR-TKIs become resistant to these agents within 

1 year [6]. Possible mechanisms of the acquired resistance have been identified, the most 

common of which is development of an EGFR T790M gatekeeper mutation, which occurs in 



 4

~50% of cases [7-10]. Other reported mechanisms of acquired resistance include MET 

amplification [11], hepatocyte growth factor expression [12], small cell transition [13], and 

epithelial-mesenchymal transition [14]. 

Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene located on 

human chromosome 10q23 that deactivates PI3K, which signals downstream of EGFR [15]. 

Although genetic alterations of the PTEN gene in NSCLC are rare, PTEN loss caused by 

promoter methylation is not uncommon [16]. Approximately 2–9% of NSCLC tumors lack 

PTEN [17]. In one study, PTEN mutations were found in eight (4.5%) of 176 NSCLC tumors, 

one which had a concurrent EGFR mutation [18]. In another study, PTEN loss and EGFR 

mutations co-occurred in one of 24 EGFR mutant patients with lung adenocarcinoma [19]. 

PTEN loss is considered indicative of primary or acquired resistance to EGFR-TKIs [20-23]. 

Additionally, co-occurrence of EGFR mutation and loss of PTEN was correlated with 

EGFR-TKI potency in glioblastoma, a common primary malignant brain tumor [24]. 

Therefore, a new strategy to combat EGFR-TKI resistance is needed. 

Vandetanib is a multi-targeted TKI that inhibits EGFR, VEGFR and rearranged 

during transfection (RET) receptor [25, 26]. This agent demonstrated efficacy in NSCLC cell 

lines harboring EGFR-activating mutations, including the T790M mutation [10, 27]. Four 

phase III trials of vandetanib in a broad population of NSCLC patients have been reported: as 

monotherapy, versus placebo, in patients previously treated with anti-EGFR therapy 
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(ZEPHYR) [28]; versus erlotinib (ZEST) [29]; and in combination with docetaxel (ZODIAC) 

[30] or pemetrexed (ZEAL) [31] in global trials. Only the ZODIAC trial met its primary 

endpoint (progression-free survival). While no study reported an advantage in overall 

survival with vandetanib, erlotinib and vandetanib showed equivalent progression-free 

survival and overall survival in the ZEST trial [29]. In four all-comers trials, the efficacy of 

vandetanib could not be demonstrated. Meanwhile, the BATTLE trial, a prospective, 

biopsy-mandated, biomarker-based, adaptively randomized phase II study, demonstrated that 

the individual markers that predicted better 8-week disease control by treatment [versus the 

opposite status (absence or presence)] were EGFR mutations for erlotinib (P = 0.04) and high 

VEGFR2 expression for vandetanib (P = 0.05) [32]. If the patients were selected according to 

target molecules, efficacy of vandetanib was presumed, even in a small sample. 

In this study, we focused on PTEN status in EGFR-mutated NSCLC and 

hypothesized that vandetanib might overcome gefitinib resistance in tumors lacking PTEN. 

Materials and methods 

Cell lines 

The human NSCLC cell lines PC-9 and NCI-H1650 were derived from patients with 

pulmonary adenocarcinomas that carried in-frame deletions in EGFR exon 19 (del 

E746-A750). PC-9 cells are highly sensitive to EGFR-TKI [10]. NCI-H1650 cells also harbor 
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homozygous deletion in PTEN, with the 3’ part of exon 8 and all of exon 9 being deleted [19]. 

PC-9 cells and H1650 cells were purchased from Immuno-Biological Laboratories (Gunma, 

Japan) and from ATCC (American Type Culture Collection, Rockville, MD), respectively. 

The cells were cultured at 37°C in 5% CO2 in RPMI-1640 medium supplemented with 10% 

heat-inactivated fetal bovine serum. 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay 

Growth inhibition was measured by a modified MTT assay. Briefly, the cells were plated on 

96-well plates at a density of 2,000 cells per well and exposed to each gefitinib or vandetanib 

for 72 h. Each assay was performed in triplicate. The 50% inhibitory concentration (IC50) of 

each drug was determined as the mean ± standard deviation (SD).  

Protein extraction and Western blot analysis 

Vandetanib and gefitinib were kindly provided by AstraZeneca. H1650 cells were exposed to 

gefitinib and vandetanib for 6 h. Cells were lysed in RIPA buffer [1% Triton X-100, 0.1% 

SDS, 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 10 mM 

�-glycerol-phosphate, 10 mM NaF, 1 mM Na-orthovanadate] containing a protease inhibitor 

tablet (Roche). Rabbit antibodies against EGFR, phospho (p)EGFR (Y1068), pHER2 

(Y1248), pHER3 (Y1289), mitogen-activated protein kinase (MAPK), pMAPK 

(T202/pY204), pAKT (Ser473), PTEN and �-actin were purchased from Cell Signaling 

Technology. Polyclonal antibodies against pVEGFR2 (Y1054) and VEGFR2 were purchased 
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from BioSource. Each sample was incubated with the appropriate primary antibody, and 

signals were detected by HRP-mediated chemiluminescence (ECL Plus).  

PTEN transfection 

The PTEN gene was cloned from PC-9 cells. PC-9 mRNA samples were prepared for reverse 

transcription-polymerase chain reaction (RT-PCR) using an RNeasy Mini Kit (Qiagen), 

according to the manufacturer’s protocol. cDNA was synthesized using SuperScript II 

Reverse Transcriptase (Invitrogen). The PTEN gene was cloned from cDNA from PC-9 cells 

by PCR using the following primers: forward,�

5’-TGTTGAATTCTTCAGCCACAAGCTCCCAGACATGACAGCCATCATCAAAGAGA

TCG-3’; and reverse, 

5’-TTGCTCTAGATTATCAGACTTTTGTAATTTGTGTATGCTGATCTTCATC-3’. The 

product of this PCR reaction was digested using EcoRI and XbaI, and then inserted into the 

pcDNA3.1(+) plasmid vector (Invitrogen). The PTEN expression vector was introduced into 

H1650 cells using Fugene6 (Roche). Stable PTEN-expressing clones were isolated by 

limiting dilution. 

PTEN knockdown 

The pBAsi-hU6 Neo vector (Takara bio) for expression of shRNA was employed to suppress 

the PTEN gene. The target sequence for PTEN-suppression was 5’- 

AUAGCUACCUGUUAAAGAA -3’. This vector was introduced into PC-9 cells using 
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Fugene6, and the clone with the greatest PTEN suppression was isolated by limiting dilution. 

Animal husbandry and drug administration 

Five-week-old female athymic mice were purchased from Japan Charles River Co. All mice 

were provided with sterilized food and water and housed in a barrier facility under a 12-h 

light/dark cycle. All animals were kept under conditions that complied with the guidelines of 

the Department of Animal Resources, Okayama University Advanced Science Research 

Center. Gefitinib and vandetanib were administered once per day, 5 days per week, by 

gavage as a 15 mg/kg suspension. The suspension was prepared in 1% polysorbate 80 by 

homogenization and ball-milled with glass beads. All procedures were performed in 

accordance with institutional guidelines for the protection of animals. 

Xenograft model 

One million H1650 cells or H1650/PTEN cells (H1650 cells with a transfected PTEN gene) 

were injected subcutaneously into the backs of each mouse. At 10 days after injection, mice 

were randomly assigned to three groups, which received either vehicle, vandetanib (15 

mg/kg/day), or gefitinib (15 mg/kg/day). Vehicle, vandetanib, and gefitinib were 

administered once per day p.o., five times per week. Tumor volume (width × width × length / 

2) and body weight were determined periodically. Tumor volumes were expressed as means 

± SD. Differences in tumor volume were evaluated using Student’s t-test. 
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Results 

The dose-response curve of H1650 cells is shown in Fig. 1A. The IC50 values of gefitinib and 

vandetanib were 34.3 ± 3.3 μM and 3.5 ± 1.2 μM, respectively. The sensitivity to vandetanib 

was significantly (3 to 10 times) higher than that to gefitinib in H1650 cells in vitro. Next, the 

efficacies of vandetanib and gefitinib against H1650 cells were determined in vivo. H1650 

xenograft tumor volumes in mice treated with gefitinib, vandetanib, or vehicle (n = 8) are 

shown in Fig. 1B. Vandetanib significantly suppressed tumor growth compared with gefitinib 

after day 15 (P < 0.01) (P = 0.005 at day 22). Protein expression profiles in H1650 cells after 

treatment with gefitinib or vandetanib are shown in Fig. 1C. Gefitinib more potently reduced 

pEGFR levels than did vandetanib. This was expected based on the kinase selectivity of 

vandetanib [25]. Levels of pMAPK, pAKT and pSTAT3 were similar in cells treated with 

either drug. pVEGFR2, pHER3 and pHER2 were not detected in H1650 cells, but were 

detected in PC-9 cells. 

The PTEN gene cloned from PC-9 cells was successfully transfected into H1650 

cells (Fig. 2A). The dose-response curves in parental H1650 cells and transfected H1650 cells 

(H1650/PTEN) treated with gefitinib for 72 h are shown in Fig. 2B. The IC50 value in 

H1650/PTEN cells (31.4 ± 4.9 μM) was similar to that in the parental cells (34.3 ± 3.3 μM). 

H1650 xenograft tumor volumes in mice receiving the indicated drug (15 mg/kg of gefitinib 

or 15 mg/kg of vandetanib; n =6) are shown in Fig. 2C. Gefitinib inhibited the growth of 
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H1650/PTEN xenograft tumors, but not H1650 parental xenograft tumors (P < 0.01 at day 

22). In contrast, vandetanib had similar effects on the growth of both types of xenograft 

tumors (n = 6) (Fig. 2D). 

Intrinsic PTEN expression in PC-9 cells was partially ablated by an 

shRNA-expression vector (Fig. 3A). The third clone from the left lane, which exhibited the 

lowest PTEN expression, was selected for further experiments. The drug sensitivities of PC-9 

parental cells and PTEN-knockdown PC-9 cells are shown in Figs. 3B and 3C. Knockdown 

of PTEN led to about five times more resistance to gefitinib in PC-9 cells in terms of IC50 

values, which for gefitinib were 0.012 ± 0.003 μM in PC-9 parental cells and 0.063 ± 0.03 

μM in PTEN-knockdown PC-9 cells (P = 0.045). Meanwhile, the IC50 value of vandetanib 

was 0.086 ± 0.01 μM in PC-9 parental cells and 0.17 ± 0.03 μM in PTEN-knockdown PC-9 

cells (P < 0.01). Contrary to our expectations, PTEN deficiency led to resistance in vitro not 

only to gefitinib but also to vandetanib. 

 

Discussion  

We demonstrated that vandetanib exhibited better efficacy than gefitinib in vitro, at clinically 

achievable concentrations, against H1650 cells harboring both EGFR mutations and PTEN 

loss (Fig. 1A); the plasma concentration of vandetanib can be >2 μM [33]. Vandetanib also 

had a superior anti-tumor effect than gefitinib in the H1650 xenograft model. 
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 Both gefitinib and vandetanib suppressed activation of EGFR and MAPK at 

concentrations of � 1 μM in vitro (Fig. 1C). In contrast, AKT phosphorylation was preserved 

at the same concentration. These results suggest that H1650 cells are not dependent on the 

EGFR-MAPK axis for survival. Ablation of PTEN in PC-9 cells carrying an EGFR mutation 

induced resistance to gefitinib (Fig. 3B). PTEN loss was previously reported to be associated 

with sensitivity to gefitinib in NSCLCs with EGFR mutations [21]. The reason that 

vandetanib was effective in PTEN-deficient and EGFR-mutant cells remains unclear. We 

examined the status of both VEGFR and RET, which are inhibited by vandetanib. VEGFR1 

mRNA levels were higher in PC-9 cells than in H1650 cells (data not shown). pVEGFR2 (Fig. 

1C) and VEGFR2 mRNA (data not shown) were not detected in H1650 cells. VEGFR3 and 

RET mRNAs were not detected in either cell line (data not shown). Thus, we could not 

explain why vandetanib was more effective than gefitinib based on the major targets of 

vandetanib (EGFR, VEGFR2, and RET). Therefore, vandetanib, but not gefitinib, might 

inhibit unknown targets in vitro. 

Although PTEN loss did not affect gefitinib sensitivity (Fig. 2B), gefitinib was 

effective in the xenografts (Fig. 2C). The same experiments were repeated in vivo using 

H1650 and H1650/PTEN cells (n = 8) (Supplementary Fig. 1). It was confirmed that gefitinib 

suppressed H1650/PTEN xenograft tumors. Thus, the efficacy of gefitinib might be affected 

by the deactivation of signaling molecules that act downstream of EGFR, supporting data 
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published previously [19]. 

A possible explanation is that the major effect of vandetanib in this model (Figs. 1B, 

2D) was not inhibition of EGFR. The different effects of vandetanib and gefitinib might be 

due to differences in their ability to suppress VEGF/VEGFR signaling in vivo. We 

hypothesized that VEGF-A levels differ between H1650 and H1650/PTEN cells. 

Supernatants were collected after culture for 6 days. VEGF-A levels in supernatants were 

determined in triplicate by enzyme-linked immunosorbent assay (Human VEGF Quantikine; 

R&D Systems, Minneapolis, USA). VEGF-A secretion (mean ± SD: 1397 ± 593 pg/mL) by 

H1650/PTEN cells tended to be lower than that (1967 ± 539 pg/mL) by H1650 cells (P = 

0.14). VEGF-A production by tumor cells results in VEGFR2 activation on the 

neovasculature around tumors. Vandetanib may block this signal in our xenograft model by 

inhibiting VEGF/VEGFR in stromal cells. Actually, a low baseline plasma VEGF 

concentration had a significantly superior progression-free survival when treated with 

vandetanib monotherapy compared with gefitinib monotherapy [34]. 

Sos et al. reported that H1650 cells are erlotinib-resistant and retained high levels of 

pAKT despite inhibition of EGFR [19]. They silenced PTEN in PC-9 cells using lentiviral 

short hairpin RNAs and this led to resistance to erlotinib. We confirmed this using gefitinib 

instead of erlotinib. Erlotinib-mediated inhibition of EGFR can be rescued by activation of 

the PI3K/AKT/mTOR pathway in cells lacking PTEN expression. The mTOR pathway, 
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which is located downstream of EGFR, plays an important role in cell proliferation and 

maintenance of the malignant phenotype, especially in PTEN-deficient tumors. The 

effectiveness of compounds targeting mTOR, such as rapamycin, CCI-779 and everolimus, in 

NSCLC has been explored [35, 36]. The combination of PI3K/AKT/mTOR pathway 

inhibitors with an EGFR-TKI may be beneficial for the resistant tumor although our data 

suggest the potency of vandetanib. 

The major point of the study is that PTEN-status alone does not explain the activity 

of vandetanib in EGFR-mutant lung cancers cells when employed a xenograft model using 

PTEN-transfected cells, as shown in Fig. 2D. The existence of mutated EGFR in lung cancer 

cells might be necessary, but not sufficient, to explain the overall in vivo efficacy of 

vandetanib, as shown in Fig. 2D vs. Fig. 3C. Thus, the dependency on the EGFR status 

should be further pursued. Bivona et al. knocked down the major NF-�B subunit RELA and 

found that RELA knockdown also induced erlotinib sensitivity in H1650 cells [37]. Its 

erlotinib-sensitizing effect was specific to mutant EGFR because no potentiating effect was 

seen in wild-type EGFR cells. Meanwhile, Kim et al. reported that expression of RELA of 

NF-�B decreased PTEN expression and resulted in increased AKT activation in vitro [38]. 

The interaction between PTEN/PI3K/AKT and NF-�B in EGFR-TKI resistance should be 

further investigated. 

Although vandetanib was shown not to be useful for non-selected NSCLC in 
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all-comers trials [28-31], it may have effects on some NSCLCs that exhibit specific 

molecular targets, such as mutated EGFR, VEGFR2 [32] and KIF5B-RET fusions [39] in 

tumor cells. Vandetanib might be useful for NSCLC patients with EGFR mutations and 

PTEN loss. Clinical studies of such NSCLC cases selected by biomarkers are warranted. 
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Figure legends 

Fig. 1 Effects of gefitinib and vandetanib on H1650 cells. 

(A) Dose-response curve for H1650 cells. The IC50 values of gefitinib and vandetanib were 

34.3 ± 3.3 and 3.5 ± 1.2 μM, respectively (P < 0.01). (B) H1650 xenograft tumor volumes in 

mice treated with gefitinib or vandetanib (15 mg/kg p.o. daily) or vehicle alone (n = 8, each). 

Vandetanib was more effective than gefitinib (P = 0.005 at day 22). Differences in tumor 

volume were compared using Student’s t-test. (C) Protein levels in H1650 cells after 

treatment with gefitinib or vandetanib. Gefitinib was a more potent suppressor of pEGFR 

than was vandetanib. Levels of pMAPK, pAKT, and pSTAT3 were similar in cells treated 

with either drug. 

 

Fig. 2 Effects of gefitinib and vandetanib on PTEN-transfected H1650 cells. 

(A) The PTEN gene cloned from PC-9 cells was transfected into H1650 cells. PTEN protein 

expression was determined by Western blotting. (B) Dose-response curves for H1650 cells 

and H1650 cells transfected with PTEN (H1650/PTEN cells). (C) Xenograft tumor volumes 

in mice treated with gefitinib (n = 6, each). Gefitinib was more effective in H1650/PTEN 

cells than in H1650 parent cells. (D) Xenograft tumor volumes in mice treated with 

vandetanib (n = 6, each). Vandetanib had similar effects on both types of xenograft tumors.  

 

Fig. 3 Effect of PTEN knockdown in PC-9 cells. 
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(A) PTEN was partially ablated using an shRNA expression vector. The third clone form the 

left lane was selected for subsequent experiments. (B) Dose-response curves for parental 

PC-9 cells and PTEN-knockdown PC-9 cells. The IC50 values of gefitinib were 0.012 ± 0.003 

μM in parental PC-9 cells and 0.063 ± 0.03 μM in PTEN-knockdown PC-9 cells (P = 0.045). 

(C) Dose-response curves for parental PC-9 cells and PTEN-knockdown PC-9 cells. The IC50 

values of vandetanib were 0.086 ± 0.01 μM in parental PC-9 cells and 0.17 ± 0.03 μM in 

PTEN-knockdown PC-9 cells (P < 0.01). 

 

Supplementary Fig. 1 

The experiment shown in Fig. 2C was repeated (n = 8, each). The results confirmed that 

gefitinib suppressed H1650/PTEN xenograft tumors. 
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