109 research outputs found

    カンボジアにおける電化が雇用、家計所得、及び児童労働に与える影響について

    Get PDF
    GRIPS Global Governance Program (G-cube)政策研究大学院大学 / National Graduate Institute for Policy Studies論文審査委員: ESTUDILLO Jonna P.(主査), WIE Dainn, 高橋 和志, 飯尾 潤, 真野 裕吉(一橋大学 経済学研究科

    Periphyton contribution to nitrogen dynamics in the discharge from a wastewater treatment plant

    Get PDF
    To evaluate the importance of periphyton to nitrogen dynamics in the discharge from wastewater treatment plants (WWTPs), we examined changes in total and inorganic nitrogen content downstream from a WWTP on the Kurose River in Hiroshima Prefecture, Japan. At 0.7 km downstream of the WWTP (point A), NH4+-N was the dominant form of inorganic nitrogen, but concentrations decreased rapidly to 5 km downstream (point B). In contrast, no significant change in the [NO2– + NO3–]-N concentration was observed between the two points. Total nitrogen (TN) load decreased significantly between the two points, suggesting that sorption and/or denitrification occurred in the river channel. Potential rates of nitrogen sorption and transformation by periphyton were determined in a laboratory experiment in which changes in the nitrogen content of river water were examined in an acrylic chamber with periphyton. Nitrification and nitrogen removal occurred mainly in the periphyton. The contributions of periphyton activity to TN and NH4+-N decrease in the field, as estimated from the results of the laboratory experiments, were 6%–18% and 23%–72%, respectively. These results suggest that periphyton plays an important role in decreasing NH4+-N concentration in the discharge from wastewater treatment plants

    Soil N Fluxes in Three Contrasting Dry Tropical Forests

    Get PDF
    A comparative study of N fluxes in soil among a dry dipterocarp forest (DDF), a dry evergreen forest (DEF), and a hill evergreen forest (HEF) in Thailand was done. N fluxes in soil were estimated using an ion exchange resin core method and a buried bag method. Soil C and N pools were 38 C Mg/ha/30 cm and 2.5 N Mg/ha/30 cm in DDF, 82 C Mg/ha/30 cm and 6.2 N Mg/ha/30 cm in DEF, and 167 C Mg/ha/30 cm and 9.3 N Mg/ha/30 cm in HEF. Low C concentration in the DDF and DEF sites was compensated by high fine soil content. In the highly weathered tropical soil, fine soil content seemed to be important for C accumulation. Temporal and vertical fluctuations of N fluxes were different among the sites. The highest N flux was exhibited at the onset of the wet season in DDF, whereas inorganic N production and estimated uptake of N were relatively stable during the wet season in DEF and HEF. It is suggested that N cycling in soil becomes stable in dry tropical forests to intermediate in temperate forests. N deposition may result in large changes of N cycling in the DDF and DEF due to low accumulations of C and N

    Cholecalciferol Supplementation Attenuates Bone Loss in Incident Kidney Transplant Recipients: A Prespecified Secondary Endpoint Analysis of a Randomized Controlled Trial

    Full text link
    Vitamin D deficiency, persistent hyperparathyroidism, and bone loss are common after kidney transplantation (KTx). However, limited evidence exists regarding the effects of cholecalciferol supplementation on parathyroid hormone (PTH) and bone loss after KTx. In this prespecified secondary endpoint analysis of a randomized controlled trial, we evaluated changes in PTH, bone metabolic markers, and bone mineral density (BMD). At 1 month post-transplant, we randomized 193 patients to an 11-month intervention with cholecalciferol (4000 IU/d) or placebo. The median baseline 25-hydroxyvitamin D (25[OH]D) level was 10 ng/mL and 44% of participants had osteopenia or osteoporosis. At the end of the study, the median 25(OH)D level was increased to 40 ng/mL in the cholecalciferol group and substantially unchanged in the placebo group. Compared with placebo, cholecalciferol significantly reduced whole PTH concentrations (between-group difference of −15%; 95% confidence interval [CI] −25 to −3), with greater treatment effects in subgroups with lower 25(OH)D, lower serum calcium, or higher estimated glomerular filtration rate (pint < 0.05). The percent change in lumbar spine (LS) BMD from before KTx to 12 months post-transplant was −0.2% (95% CI −1.4 to 0.9) in the cholecalciferol group and −1.9% (95% CI −3.0 to −0.8) in the placebo group, with a significant between-group difference (1.7%; 95% CI 0.1 to 3.3). The beneficial effect of cholecalciferol on LS BMD was prominent in patients with low bone mass pint < 0.05). Changes in serum calcium, phosphate, bone metabolic markers, and BMD at the distal radius were not different between groups. In mediation analyses, change in whole PTH levels explained 39% of treatment effects on BMD change. In conclusion, 4000 IU/d cholecalciferol significantly reduced PTH levels and attenuated LS BMD loss after KTx. This regimen has the potential to eliminate vitamin D deficiency and provides beneficial effects on bone health even under glucocorticoid treatment. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Tsujita M., Doi Y., Obi Y., et al. Cholecalciferol Supplementation Attenuates Bone Loss in Incident Kidney Transplant Recipients: A Prespecified Secondary Endpoint Analysis of a Randomized Controlled Trial. Journal of Bone and Mineral Research 37, 303 (2022); https://doi.org/10.1002/jbmr.4469

    Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle

    Get PDF
    SummarySkeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases

    The effect of cholecalciferol supplementation on allograft function in incident kidney transplant recipients: A randomized controlled study

    Full text link
    It is unknown whether cholecalciferol supplementation improves allograft outcomes in kidney transplant recipients (KTRs). We conducted a single-center randomized, double-blind, placebo-controlled trial of daily 4000 IU cholecalciferol supplementation in KTRs at 1-month posttransplant. The primary endpoint was the change in eGFR from baseline to 12-month posttransplant. Secondary endpoints included severity of interstitial fibrosis and tubular atrophy (IFTA) at 12-month posttransplant and changes in urinary biomarkers. Of 193 randomized patients, 180 participants completed the study. Changes in eGFR were 1.2 mL/min/1.73 m2 (95% CI; −0.7 to 3.1) in the cholecalciferol group and 1.8 mL/min/1.73 m2 (95% CI, −0.02 to 3.7) in the placebo group, with no significant between-group difference (−0.7 mL/min/1.73 m2 [95% CI; −3.3 to 2.0], p = 0.63). Subgroup analyses showed detrimental effects of cholecalciferol in patients with eGFR <45 mL/min/1.73 m2 (Pinteraction <0.05, between-group difference; −4.3 mL/min/1.73 m2 [95% CI; −7.3 to −1.3]). The degree of IFTA, changes in urine albumin-to-creatinine ratio, or adverse events including hypercalcemia and infections requiring hospitalization did not differ between groups. In conclusion, cholecalciferol supplementation did not affect eGFR change compared to placebo among incident KTRs. These findings do not support cholecalciferol supplementation for improving allograft function in incident KTRs. Clinical trial registry: This study was registered in the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) as UMIN000020597 (please refer to the links below). UMIN-CTR: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000023776.Doi Y., Tsujita M., Hamano T., et al. The effect of cholecalciferol supplementation on allograft function in incident kidney transplant recipients: A randomized controlled study. American Journal of Transplantation 21, 3043 (2021); https://doi.org/10.1111/ajt.16530

    河川堤防法面に成立するチガヤーヒメジョオン群落の特性

    Get PDF
    [論文] Articl

    Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders

    Get PDF
    Intracellular trafficking of receptor proteins is essential for neurons to detect various extracellular factors during the formation and refinement of neural circuits. However, the precise mechanisms underlying the trafficking of neurotrophin receptors to synapses remain elusive. Here, we demonstrate that a brain-enriched sorting nexin, ARHGAP33, is a new type of regulator for the intracellular trafficking of TrkB, a high-affinity receptor for brain-derived neurotrophic factor. ARHGAP33 knockout (KO) mice exhibit reduced expression of synaptic TrkB, impaired spine development and neuropsychiatric disorder-related behavioural abnormalities. These deficits are rescued by specific pharmacological enhancement of TrkB signalling in ARHGAP33 KO mice. Mechanistically, ARHGAP33 interacts with SORT1 to cooperatively regulate TrkB trafficking. Human ARHGAP33 is associated with brain phenotypes and reduced SORT1 expression is found in patients with schizophrenia. We propose that ARHGAP33/SORT1-mediated TrkB trafficking is essential for synapse development and that the dysfunction of this mechanism may be a new molecular pathology of neuropsychiatric disorders
    corecore