38 research outputs found

    Synthetic human gonadal tissues for toxicology

    Get PDF
    Nishimura T., Takebe T.. Synthetic human gonadal tissues for toxicology. Reproductive Toxicology 126, 108598 (2024); https://doi.org/10.1016/j.reprotox.2024.108598.The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary

    Presence of Cartilage Stem/Progenitor Cells in Adult Mice Auricular Perichondrium

    Get PDF
    BACKGROUND: Based on evidence from several other tissues, cartilage stem/progenitor cells in the auricular cartilage presumably contribute to tissue development or homeostasis of the auricle. However, no definitive studies have identified or characterized a stem/progenitor population in mice auricle. METHODOLOGY/PRINCIPAL FINDINGS: The 5-bromo-2'-deoxyuridine (BrdU) label-retaining technique was used to label dividing cells in fetal mice. Observations one year following the labeling revealed that label-retaining cells (LRCs) were present specifically in auricular perichondrium at a rate of 0.08±0.06%, but LRCs were not present in chondrium. Furthermore, LRCs were successfully isolated and cultivated from auricular cartilage. Immunocytochemical analyses showed that LRCs express CD44 and integrin-α(5). These LRCs, putative stem/progenitor cells, possess clonogenicity and chondrogenic capability in vitro. CONCLUSIONS/SIGNIFICANCE: We have identified a population of putative cartilage stem/progenitor cells in the auricular perichondrium of mice. Further characterization and utilization of the cell population should improve our understanding of basic cartilage biology and lead to advances in cartilage tissue engineering and novel therapeutic strategies for patients with craniofacial defects, including long-term tissue restoration

    Recapitulation of hepatitis B virus–host interactions in liver organoids from human induced pluripotent stem cells

    Get PDF
    Therapies against hepatitis B virus (HBV) have improved in recent decades; however, the development of individualized treatments has been limited by the lack of individualized infection models. In this study, we used human induced pluripotent stem cell (hiPSC) to generate a functional liver organoid (LO) that inherited the genetic background of the donor, and evaluated its application in modeling HBV infection and exploring virus–host interactions. To establish a functional hiPSC-LO, we cultured hiPSC-derived endodermal, mesenchymal, and endothelial cells with a chemically defined medium in a three-dimensional microwell culture system. Based on cell-cell interactions, these cells could organize themselves and gradually differentiate into a functional organoid, which exhibited stronger hepatic functions than hiPSC derived hepatic like cell (HLC). Moreover, the functional LO demonstrated more susceptibility to HBV infection than hiPSC-HLC, and could maintain HBV propagation and produce infectious virus for a prolonged duration. Furthermore, we found that virus infection could cause hepatic dysfunction of hiPSC-LOs, with down-regulation of hepatic gene expression, induced release of early acute liver failure markers, and altered hepatic ultrastructure. Therefore, our study demonstrated that HBV infection in hiPSC-LOs could recapitulate virus life cycle and virus induced hepatic dysfunction, suggesting that hiPSC-LOs may provide a promising individualized infection model for the development of individualized treatment for hepatitis

    Mechanical guidance of self-condensation patterns of differentiating progeny

    Get PDF
    Spatially controlled self-organization represents a major challenge for organoid engineering. We have developed a mechanically patterned hydrogel for controlling self-condensation process to generate multi-cellular organoids. We first found that local stiffening with intrinsic mechanical gradient (IG > 0.008) induced single condensates of mesenchymal myoblasts, whereas the local softening led to stochastic aggregation. Besides, we revealed the cellular mechanism of two-step self-condensation: (1) cellular adhesion and migration at the mechanical boundary and (2) cell-cell contraction driven by intercellular actin-myosin networks. Finally, human pluripotent stem cell-derived hepatic progenitors with mesenchymal/endothelial cells (i.e., liver bud organoids) experienced collective migration toward locally stiffened regions generating condensates of the concave to spherical shapes. The underlying mechanism can be explained by force competition of cell-cell and cell-hydrogel biomechanical interactions between stiff and soft regions. These insights will facilitate the rational design of culture substrates inducing symmetry breaking in self-condensation of differentiating progeny toward future organoid engineering.Matsuzaki T., Shimokawa Y., Koike H., et al. Mechanical guidance of self-condensation patterns of differentiating progeny. iScience 25, 105109 (2022); https://doi.org/10.1016/j.isci.2022.105109

    Preparation of mechanically patterned hydrogels for controlling the self-condensation of cells

    Get PDF
    Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization. This protocol will facilitate the rational design of culture substrates with mechanical patterns for the engineering of various functional organoids. For complete details on the use and execution of this protocol, please refer to Takebe et al. (2015) and Matsuzaki et al. (2014, 2022).Matsuzaki T., Kawano Y., Horikiri M., et al. Preparation of mechanically patterned hydrogels for controlling the self-condensation of cells. STAR Protocols 4, 102471 (2023); https://doi.org/10.1016/j.xpro.2023.102471

    Polygenic architecture informs potential vulnerability to drug-induced liver injury

    Get PDF
    Drug-Induced-Liver-Injury (DILI) is a leading cause of termination in drug development programs and removal of drugs from the market, and this is partially due to the inability to identify patients who are at risk1. Here, we developed a polygenic risk score (PRS) for DILI by aggregating effects of numerous genome-wide loci identified from previous large-scale genome-wide association studies (GWAS)2. The PRS predicted the susceptibility to DILI in patients treated with fasiglifam, amoxicillin-clavulanate or flucloxacillin, and in primary hepatocytes and stem cell-derived organoids from multiple donors treated with over 10 different drugs. Pathway analysis highlighted processes previously implicated in DILI, including unfolded protein responses and oxidative stress. In silico screening identified compounds that elicit transcriptomic signatures present in hepatocytes from individuals with elevated PRS, supporting mechanistic links and suggesting a novel screen for safety of new drug candidates. This genetic-, cellular-, organoid- and human-scale evidence underscored the polygenic architecture underlying DILI vulnerability at the level of hepatocytes, thus facilitating future mechanistic studies. Moreover, the proposed “polygenicity-in-a-dish” strategy might potentially inform designs of safer, more efficient, and robust clinical trials

    Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets

    Get PDF
    Addressing the problem of vascularization is of vital importance when engineering three-dimensional (3D) tissues. Endothelial cells are increasingly used in tissue-engineered constructs to obtain prevascularization and to enhance in vivo neovascularization. Rat bone marrow stromal cells were cultured in thermoresponsive dishes under osteogenic conditions with human umbilical vein endothelial cells (HUVECs) to obtain homotypic or heterotypic cell sheets (CSs). Cells were retrieved as sheets from the dishes after incubation at 20 °C. Monoculture osteogenic CSs were stacked on top of homotypic or heterotypic CSs, and subcutaneously implanted in the dorsal flap of nude mice for 7 days. The implants showed mineralized tissue formation under both conditions. Transplanted osteogenic cells were found at the new tissue site, demonstrating CS bone-inductive effect. Perfused vessels, positive for human CD31, confirmed the contribution of HUVECs for the neovascularization of coculture CS constructs. Furthermore, calcium quantification and expression of osteocalcin and osterix genes were higher for the CS constructs, with HUVECs demonstrating the more robust osteogenic potential of these constructs. This work demonstrates the potential of using endothelial cells, combined with osteogenic CSs, to increase the in vivo vascularization of CS-based 3D constructs for bone tissue engineering purposes.We would like to acknowledge Mariana T Cerqueira for the illustration in Figure 1. This study was supported by Formation of Innovation Center for Fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science and Technology 'Cell Sheet Tissue Engineering Center (CSTEC)' and the Global CUE program, the Multidisciplinary Education and Research Center for Regenerative Medicine (MERCREM), from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Financial support to RP Pirraco by the Portuguese Foundation for Science and Technology (FCT) through the PhD Grant SFRH/BD/44893/2008 is also acknowledged

    Organoid-guided Precision Hepatology for Steatohepatitis

    No full text

    Engineering pancreatic tissues from stem cells towards therapy

    Get PDF
    Pancreatic islet transplantation is performed as a potential treatment for type 1 diabetes mellitus. However, this approach is significantly limited due to the critical shortage of islet sources. Recently, a number of publications have developed protocols for directed β-cell differentiation of pluripotent cells, such as embryonic stem (ES) or induced pluripotent stem (iPS) cells. Decades of studies have led to the development of modified protocols that recapitulate molecular developmental cues by combining various growth factors and small molecules with improved efficiency. However, the later step of pancreatic differentiation into functional β-cells has yet to be satisfactory in vitro, highlighting alternative approach by recapitulating spatiotemporal multicellular interaction in three-dimensional (3D) culture. Here, we summarize recent progress in the directed differentiation into pancreatic β-cells with a focus on both two-dimensional (2D) and 3D differentiation settings. We also discuss the potential transplantation strategies in combination with current bioengineering approaches towards diabetes therapy
    corecore