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a b s t r a c t

Pancreatic islet transplantation is performed as a potential treatment for type 1 diabetes mellitus.
However, this approach is significantly limited due to the critical shortage of islet sources. Recently, a
number of publications have developed protocols for directed b-cell differentiation of pluripotent cells,
such as embryonic stem (ES) or induced pluripotent stem (iPS) cells. Decades of studies have led to the
development of modified protocols that recapitulate molecular developmental cues by combining
various growth factors and small molecules with improved efficiency. However, the later step of
pancreatic differentiation into functional b-cells has yet to be satisfactory in vitro, highlighting alternative
approach by recapitulating spatiotemporal multicellular interaction in three-dimensional (3D) culture.
Here, we summarize recent progress in the directed differentiation into pancreatic b-cells with a focus on
both two-dimensional (2D) and 3D differentiation settings. We also discuss the potential transplantation
strategies in combination with current bioengineering approaches towards diabetes therapy.
© 2016, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Pancreatic b-cells are responsible for producing the only hypo-
glycemic hormone, namely insulin. Whole pancreas or pancreatic
islet transplantation is a radical treatment for severe diabetic pa-
tients, mostly due to the lack of pancreatic b-cells. However, the
number of donors has never been enough, and a possible solution
to this problem is regenerative medicine.

Generally, it is difficult to expand adult derived pancreatic b-
cells in vitro. To provide alternative cells for transplantation, many
attempts have been made worldwide to develop a method for
inducing the self-renewing multipotent stem cells into functional
pancreatic b-cells. Among the many types of stem cells, two types
of pluripotent cells are of particular interest in the development of
such methods, the ES cells, which are derived from embryos that
developed from fertilized eggs, and the iPS cells, which are derived
from the reprogramming of human skin cells and other cells.
Strategies for directed differentiation into b-cells mostly rely on
aspects of physiological development of endocrine pancreas.

This article outlines pancreatic development and differentiation
and explains methods for the differentiation of ES and iPS cells into
pancreatic b-cells. Furthermore, future tasks are discussed based on
the findings of our experiments and the role of bioengineering
technologies in regenerative medicine.

2. Pancreatic development (Fig. 1)

The pancreas is an organ of endodermal origin that functions as
an exocrine gland secreting digestive enzymes into the duodenum
and also as an endocrine gland secreting blood sugar-regulating
hormones into the blood. Pancreas initially develops by budding
from the embryonic endoderm at the junction of foregut and
midgut. Pancreas development is very elaborate and involves spe-
cific time- and space-dependent activation of transcription factors
and signaling molecules [1e4]. Pancreatic development in mice
starts at embryonic day 8.0 upon induction of pancreatic progenitor
cells from pancreatic and duodenal homeobox 1 (Pdx-1) -positive
cells in the foregut endoderm [5e10] (Fig. 1a). Then, humoral fac-
tors such as activin and fibroblast growth factors (FGF) are secreted
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Fig. 1. Mouse pancreas development a
from the notochord, upon which pancreatic progenitor cells pro-
liferate to form both the dorsal and ventral buds (Fig. 1b) [11e15].
Activin, FGF as well as retinoic acid [16,17] signaling was demon-
strated to inhibit sonic hedgehog homolog, thereby, providing a
critical signaling cue for the initiation of pancreatic fate specifica-
tion [12,18,19]. Later on this pre-patterned pancreatic endoderm
develops and differentiates into insulin producing cells (Fig. 1c).
Lammert and colleagues [20e22] showed that the removal of aortic
endothelial cells impaired pancreatic differentiation in Xenopus
embryos as well as enhanced differentiation by introducing ectopic
vascularization in mice, suggesting important role of endothelium
for endocrine pancreas differentiation. Later study using mouse
suggested that endothelial cell instruction can be waived in the
initiation of Pdx1 expression in endoderm, however, they are
essential for emergence of dorsal pancreatic buds and maintenance
of Pdx1 expression through the crucial pancreatic transcription
factor 1a (Ptf1a) induction [23]. The components of buds are
pancreatic progenitor cells that differentiated from endodermal
epithelial cells. Even after bud formation, these cells, surrounded by
a mesenchyme, continue dividing so that buds can further grow
symmetrically. Understandings of epithelialemesenchymal in-
teractions between pancreatic progenitor cells and pancreatic
mesenchymal cells during the above process are extremely
important in recapitulating pancreatic development in culture. At
embryonic day 14.5, the ventral bud moves to lie on the dorsal side
of the dorsal bud upon rotation of the stomach and duodenum, and
the two buds eventually fuse (Fig. 1d). This is followed by pancre-
atic duct formation, and the ductal network formation starts upon
branching. In parallel to the pancreatic duct formation, the duct
cells give rise to pancreatic a and b-cells, and mature islets with a
core-mantle structure are formed immediately prior to birth
(Fig. 1e). The induced b-cells produce vascular endothelial growth
factor (VEGF), then attract blood vessels, and potentiate insulin
expression by recruiting a denser vasculatures compared with
surrounding exocrine components [20]. After birth, mesenchymal
cells differentiate into perivascular cells around the vascular net-
works of the islets, thereby contributing to the long-term stability
of the vascular networks. In addition, vascular endothelial cells are
in a close relationship with the islet endocrine cells throughout the
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Table 1
Comparison of existing strategies for insulin-positive cell production.

1st Author (year) Stem cell Culture method Glucose tolerance test in vitro Glucose tolerance test in vivo Glucose normalization in vivo

Lumelsky N (2001) mES 2D þþ þ
Afrikanova I (2002) mES 2D þþ þþ þþ
D' Amour (2006) hES 2D
Kroon E (2008) hES 2D þþþ(C-peptide)
Bernardo AS (2009) mES

hES
2D þ

Hrvatin S (2014) mES
hES

2D þþþ

Alipio Z (2010) miPS 2D þ þþþ
Jeon K (2012) miPS 2D þ þþþ
Tateishii K (2008) hiPS 2D þ (C-peptide)
Kunisada Y (2012) hiPS 2D þþ(C-peptide)
Thatava T (2013) hiPS 2D þ (C-peptide)
Wang XI (2009) mES 3D þþþ(C-peptide)
Saito H (2011) hiPS 3D þþ þþ
Pagliuca FW (2014) hES

hiPS
3D þ þ þþþ

Toyoda T (2015) hES
hiPS

3D þ(C-peptide)

þþþ(10-fold)
þþ(5~9-fold)
þ(2~4-fold)

þþþ(Blood glucose level <200 mg/dl)
þþ(Blood glucose level >200 mg/dl)
þ(Maintaining body weight)
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entire process, including early islet development and the initiation
of function of the matured islets [20,23,24]. Signals from the blood
and paracrine signals from the epithelial cells play important roles
in various events, such as endocrine cell differentiation, islet
development and enhancement of its function. The diversity and
importance of angiocrine signaling indicates that interactive
development of pancreas and its vasculature is a general phe-
nomenon. Different steps of embryonic pancreas development as
well as their post-natal function require inductive signals from
endothelial cells. Many studies have demonstrated induced differ-
entiation into pancreatic b-cells by mimicking such molecular
mechanisms essential for the individual steps of pancreatic devel-
opment. However, there are lots of unknown events potentially
regulating whole pancreatic developmental process beyond simple
protein secretion events, which can be learned from genetically
modified animals. For instance, it would be fascinating know how
the early hierarchical structures emerge as a result of region spe-
cific multi-cellular interaction through direct or indirect process. In
this way, notable advances in 4-D imaging and gene-editing ap-
proaches will open a new possibility to study such previously
uncharacterized process of pancreatic development.

3. Generation of pancreatic b-cells

3.1. Methods for the induction of the differentiation of ES cells into
pancreatic b-cells

ES cells are pluripotent stem cells derived from the inner cell
mass of a blastocyst. Mouse ES cells injected into the blastocyst
cavity differentiate into any type of cell, including germ cells. This
signifies that diabetes could become curable once pancreatic b-cells
that are differentiated from ES cells by in vitro induction systems
become available for transplantation.

The directed differentiation of ES cells into pancreatic b-cells (in-
sulin-producing cells) has been demonstrated in many studies sum-
marized in Table 1 [25]. One earliest example of a successful approach
via nestin-positive cells was reported by Lumelsky et al. [26], wherein
mature insulin-producing cells were differentiated from mouse ES
cells via five step directed differentiation protocols. The study was
followed by a series of reports that demonstrate the induced differ-
entiation of ES cells into insulin-producing cells [27e29]. For instance,
Hori tested a similar approach [30] and successfully induced differ-
entiation into pancreatic b-like cells by adding a phosphatidylinositol-
3 kinase (PI3K) inhibitor at the last stage of differentiation. It was re-
ported that the resulting cells formed islet-like structures and pro-
duced more insulin than those in previous reports.

The overexpression of Pdx-1, which is a common marker of
pancreatic progenitors andb-cells, has also been widely used to
augment pancreatic differentiation [29,31]. Briefly, exogenous Pdx-
1-VP16 fusion proteins that translocated into the nucleus at certain
times in the early and late stages of differentiation induction were
functional, resulting in the effective production of insulin-
producing cells from mouse or human ES cells. The expression
levels of insulin, Pdx-1, GLUT2 and C-peptide mRNAs were high in
those cells. These studies improved the efficiency of differentiation
into insulin-producing cells, but there are problems that remain to
be solved. For example, the differentiated cells only have a low
capability of synthesizing insulin, and furthermore, they show
insufficient glucose-responsive insulin (C-peptide) secretion.

Neurogenin 3 (Ngn3) is a known key transcription factor in the
developmentof pancreatic endocrine cells, and the lackof endocrine
cells has been confirmed in Ngn3-deficient mice [32]. An experi-
ment using mouse ES cells wherein Ngn3 expression was regulat-
able showed that the expression of genes associatedwith pancreatic
b-cell development (e.g., NeuroD1 and Nkx2.2) were upregulated
upon expression of the Ngn3 gene [33]. This approach induced dif-
ferentiation, and the resulting insulin-producing cells were C-pep-
tide-positive and glucose responsive. However, the differentiation
efficiency was significantly limited with this approach.

The induction of cell differentiation by mimicking the precise
molecular course of pancreatic development has been of immense
interest in recent years (Fig. 2). First, Yasunaga et al. [34] reported
that culturing ES cells in the presence of activin under serum-free
conditions produces goosecoid/Sox17/E-cadherin/CXCR4-positive
cells, which are definitive and visceral endoderm cells. D'Amour
et al. adapted a similar approach and developed a method for
generating pancreatic progenitors fromhuman ES cells in 2006 [35].
However, the efficiency of differentiation into insulin-producing
cells was approximately 12% with this approach. These cells were
not glucose-responsive, although the insulin content was compar-
ative to that in pancreatic b-cells in adults. The expression levels of
genes (e.g., Nkx6.1 and Pdx1) essential for themaintenance of b-cell
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function were extremely low, and this may result in a decreased
differentiation efficiency at each step, eventually generating a small
number of insulin-producing cells. Furthermore, many cells were
not mature, and they produced other hormones. Alternatively, the
same group showed that immature progenitor cells were trans-
planted for the in vivo maturation into pancreatic b-cells. This
strategy was successful, showing maturation of the pancreatic
endoderm derived from human ES cells in mice [36]. Afterwards,
culture methods involving step-wise medium replacement have
been gradually optimized, and the current major procedure in-
volves a following sequence: induction of embryonic endoderm
using activin A plus Wnt3 or PI3K inhibitors in the first step, fol-
lowed by differentiation into Pdx1-positive pancreatic progenitor
cells in the presence of retinoic acid and Noggin. The efficiency of
differentiation into Pdx1-positive cells was increased to 80% by this
approach. Other agents, such as bone morphogenic protein (BMP)
and hedgehog signal inhibitors, have been tested in order to in-
crease the differentiation efficiency into pancreatic progenitor cells.
The methods using lowmolecular compounds discovered by large-
scale screening have also been of great interest in recent years. Chen
et al. [37] screened 5000 compounds to identify the low molecular
compound indolactam V (ILV) as an agent that effectively differ-
entiates hES cells into Pdx-1-positive precursor cells. Furthermore,
the same group examined 4000 compounds and identified two
compounds that induce the differentiation of human and mouse ES
cells into endodermal cells. It was also shown that the addition of
ILV after the above differentiation step increases the number of Pdx-
1-positive pancreatic precursor cells compared with the method
using conventional supplements. Although these progenitor cells
can differentiate into insulin-producing cells under the conditions
generated using these approaches, the acquisition of the ability to
secrete insulin in a glucose-dependent manner remains difficult.
Finally, safety (e.g., teratoma formation) and ethical issues need to
be addressed before clinical application.
3.2. Induction of pancreatic b-cells from induced pluripotent stem cells

After the discovery of iPS cells, the experimental protocol used
to induce the differentiation of mouse [38,39] or human [40e42]
iPS cells into insulin-producing cells is almost the same as the
one for ES cells [37,43,44], requiring stepwise differentiation into
SOX-17-positive, Pdx-1-positive, and then Ngn-3-positive pro-
genitors [43,45e48]. In 2008, for the first time, Tateishi et al. [46]
successfully induced pancreatic b-like cells from human iPS (hiPS)
cells generated from fibroblasts, demonstrating that in addition to
ES cells, iPS cells could be a cellular source for insulin-producing
cells (Table 1). However, the differentiation efficiency ranged
widely among the iPS cell clones [42,46,48,49]. Later, Hrvatin et al.
used 3 different hiPS cell lines, fetal pancreatic cells, and adult in-
sulin positive cells to induce insulin-producing cells. Gene tran-
scription analysis of the cells and adult pancreatic b-cells revealed
that the 3 independent hiPS cell lines differentiated into very
similar insulin positive cell populations that are closer to human
fetal pancreatic b-cells than to adult pancreatic b-cells [50].
Although capable of producing insulin, human fetal pancreatic b-
cells secrete a negligible amount of insulin comparedwith the adult
cells, which has a capacity to respond the blood sugar level. In
accordance with these findings, the immature pancreatic b-cells
induced from hiPS cells generally lacked glucose responsive insulin
secretion and the co-expression of many hormones, including in-
sulin and glucagon [43,49]. In other words, insulin positive cells
induced in vitro differ from normal adult pancreatic b-cells in that
they have not yet differentiated into mature pancreatic b-cells [51].
To realize the clinical application of iPS cells, mature pancreatic b-
cells need to be produced stably in large quantities, while main-
taining the homogeneity among the differentiated cells. In addition,
the induced insulin-producing cells need to survive for a long
period of time without forming tumors. After addressing these is-
sues, the superiority of an iPS cell based treatment for diabetes,
over the present treatment, should be demonstrated. Furthermore,
pancreatic b-cells induced from iPS cells would be useful for not
only the establishment of cell differentiation technology but also
for the pathological analysis of type 1 and 2 diabetes if the cells are
induced from iPS cells established from diabetic patients. In this
sense, recent remarkable progress in beta cell maturation strategies
is noteworthy, yet to be confirmed their reproducibility [60].
3.3. Direct reprogramming into pancreatic b-cells

As discussed above, the application of stem cells is affected by
various factors, such as the efficiency of inducing differentiation
into pancreatic b-cells, tumor formation due to contamination of
the undifferentiated cells, and the survival of the transplanted cells.
Consequently, some studies focus on the production of pancreatic
b-cells directly from differentiated cells, by a process called direct
reprogramming, bypassing the pluripotent state. In a study using a
viral system to express certain genes (such as Ngn3, Pdx1, and
MafA), Zhou et al. [52] successfully induced insulin-producing cells
from acinar cells in adult mice. The transplantation of these insulin-
producing cells led to a reduction in blood glucose levels in diabetic
mice, demonstrating the treatment capability of the cells.

Classically, Sosa et al. revealed that the expression of Pax4 led to
the successful induction of pancreatic b-cells, and the loss of Pax4
resulted in a decrease in the number of pancreatic b-cells and an
increase in the number of a-cells [53]. A study using the pancreatic
duct ligation model showed that pancreatic injury resulted in an
increased number of pancreatic islet cells because of the trans-
differentiation that occurred in the neighboring tissues [54]. In this
model, the disappearance of the acinar cells was observed concur-
rently with an increase in pancreatic ductal cells. According to Xu
et al. [55], the ligation of the pancreatic duct induced the reex-
pression of Ngn3 and the differentiation of the produced endocrine
progenitor cells into pancreatic b-cells. However, a recent study
showed no change in the number of pancreatic b-cells after
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pancreatic duct ligation [56,57]. Therefore, further studies are
needed to substantially increase the efficiency of in vivo induction in
order to improve treatment efficacy and to investigate the similar-
ities, such as the functionality, size, morphology, andmicrostructure,
between the induced cells and the mature pancreatic b-cells.

3.4. Generation of pancreatic b-cells using the three-dimensional
cell culture method

Various in vitro techniques have been used to induce the dif-
ferentiation of pluripotent stem cells into insulin-producing cells,
but none of them have produced cells with functions similar to
those of normal pancreatic b-cells. We attribute this to the notion
that the induced cells are somehow trapped in an immature stage
of differentiation. Therefore, to fully develop into functional
pancreatic b-cells, it is essential to establish a differentiation
inducing system that accurately reproduces the normal physio-
logical process of differentiation beyond the exposure or transient
overexpression of specific proteins.

In recent years, 3D culture techniques have been used to
improve the efficiency of stem cell differentiation or to help the
cells to attain the last stage of differentiation [58e61]. In fact, the
functional capability of the pancreatic islet to secrete insulin de-
clines when the isolated islet is separated into individual cells,
suggesting that the cellecell interactions are essential for the
function and maturation of pancreatic b-cells [62]. However, to
date, none of the 3D culture methods guide the maturation of b-
cells. It is believed that one of the reasons for this is the absence of
supporting structures such as blood vessels. The vasculature not
just provides nutrients and oxygen to tissues but also contributes to
the construction of the 3D tissue architecture with cell polarity and
is essential for the differentiation, growth, andmaintenance of cells
prior to blood perfusion. Engineered pancreatic tissues are, thus,
unable to potentiate their functions in the same way as develop-
ment because their maturation process has been compromised
because of the lack of the accompanying vascularization (Fig. 3).
Additionally, one might consider the role of other supporting lin-
eages including mesenchyme, immune cells and neuronal cells in
proper organogenesis, yet to be characterized.

Therefore, to model the more complex tissue development
in vitro, there is a need to develop a specific culture by examining
communications across different lineages or germ layers. Remark-
ably, a recently developed culture principle using a “self-conden-
sation” method has enabled the study of aspects of early
organogenesis in culture. With this principle, mesenchymal cell-
driven condensation on soft substrate generate complex and large
(~5 mm in size) tissues comprised of any heterotypic cell pop-
ulations including stem cell-derived multiple progenitors [63]. The
promise of this technology was initially documented by hiPS cell-
derived rudimentary liver (liver bud) transplantation grown from
iPS cell derived hepatic endoderm, human endothelial cells and
mesenchymal stem cells [63]. By applying this method for
enhancing vascularization of the mouse pancreatic b-cells, we
successfully generated a pancreatic islet-like tissue with vascular
structures and transplanted the tissue into hyperglycemic animals
to effectively treat diabetes (Fig. 4) [64]. Unlike the conventional
cell differentiation systems, which reproduce the developmental
process of the pancreas in vitro upon the addition of differentiation
inducing factors, the 3D culture system not merely enable a quick
tissue vascularization, but activate cell intrinsic developmental
program in the presence of optimal supporting cell populations.
Based on these findings, we expect that these 3D culture approach
will become a basic technique in the establishment of regenerative
medicine for pancreatic diseases and for the development of novel
treatments for diabetes in the future.

4. Integrating bioengineering technology for clinical
transplantation

To establish effective transplantation therapies against diabetes,
it is necessary to take full advantage of engineering technologies,
especially biomaterials engineering, especially because of the ne-
cessity for islet protection from autoimmune destruction. For
example, a bioartificial pancreas is made of pancreatic b-cells
covered by a semipermeable membrane [65e75] or gel [76e87] to
ensure immunoisolation. The immunoisolating semipermeable
membrane allows glucose, oxygen, and other lowmolecular weight
nutrients to enter and insulin to diffuse out, while preventing im-
mune cells, high molecular weight antibodies and complement
proteins from passing through the membrane. Furthermore, the
immunoisolating semipermeable membrane enables the possible
use of islet xenografts, which normally provoke an intense immune
rejection and often do not survive, thus solving typical
transplantation-related challenges, such as immunosuppression
and the lack of donor tissues. To date, various bioartificial pan-
creases have been developed, and they can be largely divided into
semipermeable diffusion chamber and encapsulation type
pancreatic islets based on the size and method of immunoisolation.

Using diffusion chambers containing pancreatic tissue from
newborn rabbits, Gates et al. performed xenograft transplantation
and successfully normalized blood glucose levels in diabetic rats
[65]. In addition, the pancreatic islet filling a cavity created by
immunoisolating semipermeable membranes was transplanted
into the peritoneal cavity in a previous study [66e68]. Diffusion
chambers are suited for the development and optimization of
semipermeable membranes but necessitate some planning and
ingenuity for encapsulation and also require measures to prevent
aggregation and necrosis of the islet floating inside the chamber. As
a modified type of this approach, blood is perfused through an
arteriovenous shunt made of semipermeable membranes, and the



Pancreatic islet like tissue 

Self-condensation  
culture 

Pancreatic  cells Vascular endothelial cells Mesenchymal stem cells 

Fig. 4. Generation of islet-like structure with human vascular networks.

Y. Takahashi et al. / Regenerative Therapy 3 (2016) 15e2320
islets are placed into the surrounding tissue [69,70]. Although the
transplantation is relatively easy, the method requires anti-
coagulation therapy because of a high risk of thrombus formation
and is not suited for long-term use.

Encapsulated islets are currently the most anticipated method
of creating an artificial pancreatic islet [71,76]. In this method, islets
are enclosed by membranes and gels, such as agarose [77,78], and
contain alginate [72] as the primary component. Depending on the
size, the encapsulated islets are classified as microencapsulated or
macroencapsulated cells. For microencapsulation, the islets are
enclosed in gel beads measuring several hundred microns in
diameter [79], offering a large surface area and favorable perme-
ation compared with the macroencapsulated cells. However, beads
that do not contain islets, which are produced during the produc-
tion process, should be removed. In addition, when adverse events
occur, the safety of the system is unfavorable because it is difficult
to recover the beads from the abdominal cavity or another body
cavity. Therefore, research is currently underway to develop much
smaller capsules for transplantation into subcutaneous or muscle
tissue, which involves safe and minimal invasive procedures or
injection into the portal vein, which is currently the target site of
islet transplantation. Another advantage of using smaller capsules
is the shorter distance between the islet and the outside environ-
ment, thereby enhancing membrane permeability and the main-
tenance of cellular functions. For example, Teramura et al.
successfully wrapped pancreatic islets using extremely thin mem-
branes that they produced by binding polyvinyl alcohol (PVA) to
polyethylene glycol (PEG)-lipid conjugates that are immobilized on
the surface of islets through the interaction with the lipid layer of
the cell membrane [73,74]. By taking advantage of the self-
assembling property of streptavidin and biotin conjugated to
poly(L-lysine)-PEG, Wilson et al. developed a novel technique to
wrap pancreatic islets in thin membranes and showed that the
survival rate and amount of insulin secretion of these cells were
similar to those of normal pancreatic islets [75], suggesting that the
cells are suitable for injection into the portal vein in mice. However,
because the physicochemical and biological durability and the
immunoisolation properties of the thin membrane remain largely
unknown, further studies are necessary to realize its clinical
application. To overcome the drawback of the microencapsulated
cells, that is, their inability to be recovered, research has focused on
macroencapsulation, in which islets are wrapped in a gel large
enough to handle macroscopically. Compared with micro-
encapsules, the relative surface area is small, and the permeability
is somehow unfavorable. However, with ingenious alterations in
the graft sites, macrocapsules may be suitable for clinical applica-
tion because they can be retreived if adverse events occur or if their
efficacy disappears, thus ensuring safety. In a previous study using
mice and rats [80e83], pancreatic islets placed in a tube made of a
PVA gel reinforced by a mesh was transplanted to treat diabetes. In
another study, by taking advantage of the physicochemical prop-
erties of PVA dissolved in water, that is, the formation of fine
crystalline structures and the polymerization at low temperatures,
and by integrating these properties into the frozen storage of
pancreatic islets, the authors formed a sheet of an aqueous PVA
solution mixed with cells. Then, by freezing and thawing the sheet,
the authors successfully microencapsulated the pancreatic islet
cells using the PVA gel, producing effective islet grafts [84e87].
These encapsulation techniques will be beneficial in terms of
measures to reduce health risks, such as tumor formation, when it
is time to transplant pancreatic islet-like tissues differentiated from
the stem cells, such as ES or iPS cells, in the future.

Recent advances in nanotechnology have enabled the regulation
of cells through the scaffolds made of biodegradable polymers, and
research to create homogeneous and dense cell cultures using
scaffold materials has intensified. Okano et al. proposed the pro-
duction of a sheet of tissuemade of a single ormultiple layers of cells
[88]. To achieve this, a temperature-responsive polymer called poly-
N-isopropylacrylamide (PIPAAm), which changes its hydrophilicity
with temperature, was immobilized evenly on the inside surface of a
culture dish at the nanoscale level. The temperature is then changed
to modify the hydrophilicity of PIPAAm and the adhesion of the cells
growing on this special dish. Cells grow to confluence on the base of
this temperature-responsive polymer at 37 �C, but a sheet of cells
comes off the base material when the temperature is dropped to
�32 �C. These sheets are void of chemical or physical damage and
maintain extracellular matrix and adhesion molecules, enhancing
their survival in tissues. Sheets of pancreatic islets can be trans-
planted to humans to perform the function of the pancreatic islet for
a long time and would eventually turn into an artificial organ. By
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reforming the pancreatic islet and producing sheets of islet cells,
Shimizu et al. successfully transplanted the islet cells even in a space
with a poor blood supply, such as subcutaneous tissue [89,90].
Therefore, they addressed the problems associated with pancreatic
islet transplantation, namely, instant blood-mediated reaction
(IBMIR) and graft failure because of inflammation in the area sup-
plied by the portal vein due to ischemia induced by the islet. The
clinical application of the pancreatic islet sheets separated from the
culture dish is expected to be highly effective because these sheets
can be transplanted into various tissues and organs after individu-
alizing the size and shape of the sheets to meet the physiological
functions of each patient [91e95].

In the field of biomaterials, research and development has
conventionally been performed to create materials that are
biocompatible and quickly adapt to the human body, without
stimulating the innate inflammatory and immune systems, and thus,
avoiding recognition or rejection by the body. However, in recent
years, research has focused on developing biomaterials that proac-
tively reach out to the body. In mice, Shapiro et al. first created a
subcutaneous site densely packed with blood vessels by subcuta-
neously imbedding a device containing pro-angiogenic factors, and
then, by removing the device, they were able to transform the site
into a capillary bed with a space for transplantation [96]. These beds
enable the tissues to promote long-term survival and functional
maintenance of cells and tissues transplanted in the space. Other
recent advance is to freely fabricate the shape and size of tissues by
employing our cell-laden fibres technology [97]. Onoe et al. showed
the promise of highly handleable characteristic of their fibres for the
encapsulation of the murine islets. Thus, combination of the above
described transplantation approaches, which is minimally invasive
and offers removable grafts, would improve the applicability to
severely diabetic patients who cannot be otherwise treated.

5. Conclusion

We have summarized the stat-of-art of b-cell induction ap-
proaches. However, it needs to be emphasized that previous studies
have not established a fully reproducible technique that can faith-
fully cure diabetes through the generation of mature pancreatic b-
cells. Alternatively, pancreatic progenitor transplantation, i.e.,
in vivo maturation approaches, hold promise by making a retriev-
able graft, as ViaCyte just started the clinical trial recently. Other
progress on-going would be a 3-D culture based approaches to
overcome the previous limitations of flat plate culture based ap-
proaches with the use of self-organizing organoid or organ bud.
Together, these efforts one day offer hope for the complete cure for
severe diabetes and will yield novel regenerative approaches for
the treatment of end-stage organ failure.
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